aboutsummaryrefslogtreecommitdiff
path: root/tools/planetest/camfind.c
blob: e4e6a0f7215e928eba10ff5d2c334ef9a28c520c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#include <stdio.h>
#include <stdlib.h>
#include "linmath.h"
#include <string.h>
#include <math.h>

#define PTS 32
#define MAX_CHECKS 20000

double hmd_points[PTS*3];
double hmd_point_angles[PTS*2];
int    hmd_point_counts[PTS*2];
int LoadData( char Camera );

//Values used for RunTest()
float LighthousePos[3] = { 0, 0, 0 };
float LighthouseQuat[4] = { 1, 0, 0, 0 };

//Actual values
float xyzypr[6] = { 0, 0, 0, 0, 0, 0 };


float RunOpti( int axis );
float RunTest( int print );
void PrintOpti();

int main()
{
	int i;

	if( LoadData( 'R' ) ) return 5;

	int opti = 0;
	int cycle = 0;
	int axis = 0;

	float dx, dy, dz;

	float bestxyzypr[6];
	memcpy( bestxyzypr, xyzypr, sizeof( xyzypr ) );

	float fullrange = 5;
	for( cycle = 0; cycle < 4; cycle ++ )
	{
//		for( axis = 0; axis < 3; axis++ )
//		{
			float bestxyzyprrunning[6];
			float beste = 1e20;
			for( dz = -fullrange; dz < fullrange; dz += fullrange/5 )
			{
			for( dy = -fullrange; dy < fullrange; dy += fullrange/5 )
			{
			for( dx = -fullrange; dx < fullrange; dx += fullrange/5 )
			{
				memcpy( xyzypr, bestxyzypr, sizeof( xyzypr ) );
				xyzypr[0] += dx;
				xyzypr[1] += dy;
				xyzypr[2] += dz;
				xyzypr[3] = 0;
				xyzypr[4] = 0;
				xyzypr[5] = 0;
				float ft;
				int reopt = 0;
				for( reopt = 0; reopt < 10; reopt++ )
				for( opti = 3; opti < 6; opti++ )
				{
					ft = RunOpti( opti );
				}
				if( ft < beste ) { beste = ft; memcpy( bestxyzyprrunning, xyzypr, sizeof( xyzypr ) ); }
				//printf( "%f %f %f %f\n", xyzypr[0], xyzypr[1], xyzypr[2], ft );
			}}}
			memcpy( bestxyzypr, bestxyzyprrunning, sizeof( bestxyzypr ) );
			printf( "%f %f %f %f %f %f = %f\n", bestxyzypr[0], bestxyzypr[1], bestxyzypr[2], bestxyzypr[3], bestxyzypr[4], bestxyzypr[5], beste );
//		}

		fullrange *= 0.3;
	}

	//Use bestxyzypr
	memcpy( xyzypr, bestxyzypr, sizeof( xyzypr ) );
	PrintOpti();
}

void PrintOpti()
{
	float xyzyprchange[6];
	memcpy( xyzyprchange, xyzypr, sizeof( xyzypr ) );
	quatfromeuler( LighthouseQuat, &xyzyprchange[3] );
	memcpy( LighthousePos, &xyzyprchange[0], sizeof( LighthousePos ) );
	float ft = RunTest(1);
}


float RunOpti( int axis )
{
	float xyzyprchange[6];
	memcpy( xyzyprchange, xyzypr, sizeof( xyzypr ) );
	int i;
	float minv = 1e20;
	float fv = -1.3;
	float bv = 0;


	//Coarse linear search
	for( i = 0; i < 26; i++ )
	{
		xyzyprchange[axis] = fv;
		quatfromeuler( LighthouseQuat, &xyzyprchange[3] );
		memcpy( LighthousePos, &xyzyprchange[0], sizeof( LighthousePos ) );
		float ft = RunTest(0);
		if( ft < minv ) { minv = ft; bv = fv; }
		fv += 0.1;
	}

	xyzyprchange[axis] = bv;

	//Now, do a more precise binary search.
	float jumpamount = 0.1;
	for( i = 0; i < 30; i++ )
	{
		float orig = xyzyprchange[axis];

		minv = 1e20;

		fv = xyzyprchange[axis] = orig;
		quatfromeuler( LighthouseQuat, &xyzyprchange[3] );
		memcpy( LighthousePos, &xyzyprchange[0], sizeof( LighthousePos ) );
		float ft = RunTest(0);
		if( ft < minv ) { minv = ft; bv = fv; }

		fv = xyzyprchange[axis] = orig + jumpamount;
		quatfromeuler( LighthouseQuat, &xyzyprchange[3] );
		memcpy( LighthousePos, &xyzyprchange[0], sizeof( LighthousePos ) );
		ft = RunTest(0);
		if( ft < minv ) { minv = ft; bv = fv; }

		fv = xyzyprchange[axis] = orig - jumpamount;
		quatfromeuler( LighthouseQuat, &xyzyprchange[3] );
		memcpy( LighthousePos, &xyzyprchange[0], sizeof( LighthousePos ) );
		ft = RunTest(0);
		if( ft < minv ) { minv = ft; bv = fv; }

		xyzyprchange[axis] = bv;

		jumpamount *= 0.5;
	}



	xyzypr[axis] = bv;
	return minv;
}


float RunTest( int print )
{
	int k;
	float totprob = 0.0;
	int ict = 0;
	for( k = 0; k < 64; k++ )
	{
		if( hmd_point_counts[k] == 0 ) continue;
		int axis = k%2;
		int pt = k/2;
		float angle = (hmd_point_angles[k] - 200000) / 200000 * 3.1415926535/2;
		if( axis == 0) angle = -angle;  //Flip coordinate systems
		float thiseuler[3] = { 0, 0, 0 };
		thiseuler[axis] = angle;  

		if( print ) printf( "%d %d : angle: %f / ", axis, pt, angle );
		//axis = 0: x changes.  +y is rotated plane normal.
		//axis = 1: y changes.  +x is rotated plane normal.
		float planequat[4];
		quatfromeuler( planequat, thiseuler );
		quatrotateabout( planequat, LighthouseQuat, planequat );  //Order of rotations may be wrong.
		float plane_normal[3] = { 0, 0, 0 };
		plane_normal[!axis] = 1;
		quatrotatevector( plane_normal, planequat, plane_normal );

		//plane_normal is our normal / LighthousePos is our point.
		float w0[] = { hmd_points[pt*3+0], hmd_points[pt*3+1], hmd_points[pt*3+2] };
		//float w0[] = { 0, 0, 0 };
		float d = plane_normal[0] * LighthousePos[0] + plane_normal[1] * LighthousePos[1] + plane_normal[2] * LighthousePos[2];
		float D = plane_normal[0] * w0[0]            + plane_normal[1] * w0[1]            + plane_normal[2] * w0[2] + d;
			//Point line distance assuming ||normal|| = 1.

		if( print ) printf( " %f %f -\n", d, D );
		totprob += (D*D);
		ict++;
		if( print )
		{
			//printf( "%d %d ", pt, axis, hmd_points[ ); ///..x.x.x  XXX TODO check line intersection and planequat thing
		}

		//printf( "  : %f %f %f %f  %f %f\n", plane_normal[0], plane_normal[1], plane_normal[2], 1.0, angle, hmd_point_angles[k] );
	}
	return sqrt(totprob/ict);
}


int LoadData( char Camera )
{
	int calpts[MAX_CHECKS*4]; //X (0) or Y (1), ID, offset
	int calptscount;

	FILE * f = fopen( "correct_hmd_points.csv", "r" );
	int pt = 0;
	if( !f ) { fprintf( stderr, "error: can't open hmd points.\n" ); return -5; }
	while(!feof(f) && !ferror(f) && pt < PTS)
	{
		float fa, fb, fc;
		int r = fscanf( f,"%g,%g,%g\n", &fa, &fb, &fc );
		hmd_points[pt*3+0] = fa;
		hmd_points[pt*3+1] = fb;
		hmd_points[pt*3+2] = fc;
		pt++;
		if( r != 3 )
		{
			fprintf( stderr, "Not enough entries on line %d\n", pt );
			return -8;
		}
	}
	if( pt < PTS )
	{
		fprintf( stderr, "Not enough points.\n" );
		return -9;
	}
	fclose( f );
	printf( "Loaded %d points\n", pt );


	int xck = 0;
	f = fopen( "third_test_with_time_lengths.csv", "r" );
	if( !f ) { fprintf( stderr, "Error: can't open two lighthouses test data.\n" ); return -11; }
	while( !feof(f) && !ferror(f) )
	{
		char * lineptr;
		size_t n;
		lineptr = 0;
		n = 0;
		ssize_t r = getline( &lineptr, &n, f );
		char lf[10];
		char xory[10];
		char dev[10];
		int timestamp;
		int sensorid;
		int offset;
		int code;
		int length;
		int rk = sscanf( lineptr, "%9s %9s %9s %d %d %d %d %d\n", lf, xory, dev, &timestamp, &sensorid, &code, &offset, &length );
		if( lf[0] == Camera && rk == 8 )
		{
			//calpts
			if( xory[0] == 'X' )
			{
				calpts[xck*3+0] = 0;
			}
			else if( xory[0] == 'Y' )
			{
				calpts[xck*3+0] = 1;
			}
			else
			{
				printf( "Confusing line\n" );
				continue;
			}

			calpts[xck*3+1] = sensorid;
			calpts[xck*3+2] = offset;
			xck++;
		}
		if( lineptr ) free( lineptr );
	}
	printf( "Cal points: %d\n", xck );
	calptscount = xck;

	int i;
	for( i = 0; i < calptscount; i++ )
	{
		int isy = calpts[i*3+0];
		int pt = calpts[i*3+1];
		int ofs = calpts[i*3+2];
		hmd_point_counts[pt*2+isy]++;
		hmd_point_angles[pt*2+isy]+=ofs;
	}
	for( i = 0; i < 32; i++ )
	{
		if( hmd_point_counts[i*2+0] < 100 ) hmd_point_counts[i*2+0] = 0;
		if( hmd_point_counts[i*2+1] < 100 ) hmd_point_counts[i*2+1] = 0;

		hmd_point_angles[i*2+0]/=hmd_point_counts[i*2+0];
		hmd_point_angles[i*2+1]/=hmd_point_counts[i*2+1];
	}
	return 0;
}