aboutsummaryrefslogtreecommitdiff
path: root/tools/lighthousefind_tori/torus_localizer.c
blob: 894bbceabdc2b8b27b719bcef8b61926c02e62bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#include <memory.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "linmath.h"
#include "tori_includes.h"
#include "visualization.h"


static FLT distance(Point a, Point b)
{
	FLT x = a.x - b.x;
	FLT y = a.y - b.y;
	FLT z = a.z - b.z;
	return FLT_SQRT(x*x + y*y + z*z);
}

Matrix3x3 GetRotationMatrixForTorus(Point a, Point b)
{
	Matrix3x3 result;
	FLT v1[3] = { 0, 0, 1 };
	FLT v2[3] = { a.x - b.x, a.y - b.y, a.z - b.z };

	normalize3d(v2,v2);

	rotation_between_vecs_to_m3(&result, v1, v2);

	// Useful for debugging...
	//FLT v2b[3];
	//rotate_vec(v2b, v1, result);

	return result;
}

typedef struct
{
	Point a;
	Point b;
	FLT angle;
	FLT tanAngle; // tangent of angle
	Matrix3x3 rotation;
	Matrix3x3 invRotation; // inverse of rotation

} PointsAndAngle;


Point RotateAndTranslatePoint(Point p, Matrix3x3 rot, Point newOrigin)
{
	Point q;

	double pf[3] = { p.x, p.y, p.z };
	q.x = rot.val[0][0] * p.x + rot.val[1][0] * p.y + rot.val[2][0] * p.z + newOrigin.x;
	q.y = rot.val[0][1] * p.x + rot.val[1][1] * p.y + rot.val[2][1] * p.z + newOrigin.y;
	q.z = rot.val[0][2] * p.x + rot.val[1][2] * p.y + rot.val[2][2] * p.z + newOrigin.z;

	return q;
}

double angleFromPoints(Point p1, Point p2, Point center)
{
	Point v1, v2, v1norm, v2norm;
	v1.x = p1.x - center.x;
	v1.y = p1.y - center.y;
	v1.z = p1.z - center.z;

	v2.x = p2.x - center.x;
	v2.y = p2.y - center.y;
	v2.z = p2.z - center.z;

	double v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z);
	v1norm.x = v1.x / v1mag;
	v1norm.y = v1.y / v1mag;
	v1norm.z = v1.z / v1mag;

	double v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z);
	v2norm.x = v2.x / v2mag;
	v2norm.y = v2.y / v2mag;
	v2norm.z = v2.z / v2mag;

	double res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z;

	double angle = acos(res);

	return angle;
}

Point midpoint(Point a, Point b)
{
	Point m;
	m.x = (a.x + b.x) / 2;
	m.y = (a.y + b.y) / 2;
	m.z = (a.z + b.z) / 2;

	return m;
}

// What we're doing here is:
// * Given a point in space
// * And points and a lighthouse angle that implicitly define a torus
// * for that torus, what is the toroidal angle of the plane that will go through that point in space
// * and given that toroidal angle, what is the poloidal angle that will be directed toward that point in space?
void estimateToroidalAndPoloidalAngleOfPoint(
	PointsAndAngle *pna,
	Point point,
	double *toroidalSin,
	double *toroidalCos,
	double *poloidalAngle,
	double *poloidalSin)
{
	// We take the inverse of the rotation matrix, and this now defines a rotation matrix that will take us from
	// the tracked object coordinate system into the "easy" or "default" coordinate system of the torus.
	// Using this will allow us to derive angles much more simply by being in a "friendly" coordinate system.
	Matrix3x3 rot = pna->invRotation;
	Point origin;
	origin.x = 0;
	origin.y = 0;
	origin.z = 0;

	Point m = midpoint(pna->a, pna->b);

	// in this new coordinate system, we'll rename all of the points we care about to have an "F" after them
	// This will be their representation in the "friendly" coordinate system
	Point pointF;

	// Okay, I lied a little above.  In addition to the rotation matrix that we care about, there was also
	// a translation that we did to move the origin.  If we're going to get to the "friendly" coordinate system
	// of the torus, we need to first undo the translation, then undo the rotation.  Below, we're undoing the translation.
	pointF.x = point.x - m.x;
	pointF.y = point.y - m.y;
	pointF.z = point.z - m.z;

	// now we'll undo the rotation part.
	pointF = RotateAndTranslatePoint(pointF, rot, origin);

	// hooray, now pointF is in our more-friendly coordinate system.  

	// Now, it's time to figure out the toroidal angle to that point.  This should be pretty easy. 
	// We will "flatten" the z dimension to only look at the x and y values.  Then, we just need to measure the 
	// angle between a vector to pointF and a vector along the x axis.  

	FLT toroidalHyp = FLT_SQRT(SQUARED(pointF.y) + SQUARED(pointF.x));

	*toroidalSin = pointF.y / toroidalHyp;

	*toroidalCos = pointF.x / toroidalHyp;

	//*toroidalAngle = atan(pointF.y / pointF.x);
	//if (pointF.x < 0)
	//{
	//	*toroidalAngle += M_PI;
	//}

	//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
	//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);

	//assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 < 0.000001);
	//assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 > -0.000001);

	// SCORE!! We've got the toroidal angle.  We're half done!

	// Okay, what next...?  Now, we will need to rotate the torus *again* to make it easy to
	// figure out the poloidal angle.  We should rotate the entire torus by the toroidal angle
	// so that the point we're focusin on will lie on the x/z plane.  We then should translate the
	// torus so that the center of the poloidal circle is at the origin.  At that point, it will
	// be trivial to determine the poloidal angle-- it will be the angle on the xz plane of a 
	// vector from the origin to the point.

	// okay, instead of rotating the torus & point by the toroidal angle to get the point on
	// the xz plane, we're going to take advantage of the radial symmetry of the torus
	// (i.e. it's symmetric about the point we'd want to rotate it, so the rotation wouldn't 
	// change the torus at all).  Therefore, we'll leave the torus as is, but we'll rotate the point
	// This will only impact the x and y coordinates, and we'll use "G" as the postfix to represent
	// this new coordinate system

	Point pointG;
	pointG.z = pointF.z;
	pointG.y = 0;
	pointG.x = sqrt(SQUARED(pointF.x) + SQUARED(pointF.y));

	// okay, that ended up being easier than I expected.  Now that we have the point on the xZ plane,
	// our next step will be to shift it down so that the center of the poloidal circle is at the origin.
	// As you may have noticed, y has now gone to zero, and from here on out, we can basically treat
	// this as a 2D problem.  I think we're getting close...

	// I stole these lines from the torus generator.  Gonna need the poloidal radius.
	double distanceBetweenPoints = distance(pna->a, pna->b); // we don't care about the coordinate system of these points because we're just getting distance.
	double toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
	double poloidalRadius = sqrt(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));

	// The center of the polidal circle already lies on the z axis at this point, so we won't shift z at all. 
	// The shift along the X axis will be the toroidal radius.  

	Point pointH;
	pointH.z = pointG.z;
	pointH.y = pointG.y;
	pointH.x = pointG.x - toroidalRadius;

	// Okay, almost there.  If we treat pointH as a vector on the XZ plane, if we get its angle,
	// that will be the poloidal angle we're looking for.  (crosses fingers)

	FLT poloidalHyp = FLT_SQRT(SQUARED(pointH.z) + SQUARED(pointH.x));

	*poloidalSin = pointH.z / poloidalHyp;


	*poloidalAngle = atan(pointH.z / pointH.x);
	if (pointH.x < 0)
	{
		*poloidalAngle += M_PI;
	}

	//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
	//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);



	// Wow, that ended up being not so much code, but a lot of interesting trig.
	// can't remember the last time I spent so much time working through each line of code.

	return;
}

#define MAX_POINT_PAIRS 100

FLT angleBetweenSensors(TrackedSensor *a, TrackedSensor *b)
{
	FLT angle = FLT_ACOS(FLT_COS(a->phi - b->phi)*FLT_COS(a->theta - b->theta));
	FLT angle2 = FLT_ACOS(FLT_COS(b->phi - a->phi)*FLT_COS(b->theta - a->theta));

	return angle;
}

// This provides a pretty good estimate of the angle above, probably better
// the further away the lighthouse is.  But, it's not crazy-precise.
// It's main advantage is speed.
FLT pythAngleBetweenSensors2(TrackedSensor *a, TrackedSensor *b)
{
	FLT p = (a->phi - b->phi);
	FLT d = (a->theta - b->theta);

	FLT adjd = FLT_SIN((a->phi + b->phi) / 2);
	FLT adjP = FLT_SIN((a->theta + b->theta) / 2);
	FLT pythAngle = sqrt(SQUARED(p*adjP) + SQUARED(d*adjd));
	return pythAngle;
}

Point calculateTorusPointFromAngles(PointsAndAngle *pna, FLT toroidalSin, FLT toroidalCos, FLT poloidalAngle, FLT poloidalSin)
{
	Point result;

	FLT distanceBetweenPoints = distance(pna->a, pna->b);
	Point m = midpoint(pna->a, pna->b);
	Matrix3x3 rot = pna->rotation;

	FLT toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
	FLT poloidalRadius = FLT_SQRT(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));

	result.x = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalCos;
	result.y = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalSin;
	result.z = poloidalRadius*poloidalSin;
	result = RotateAndTranslatePoint(result, rot, m);

	return result;
}

FLT getPointFitnessForPna(Point pointIn, PointsAndAngle *pna)
{

	double toroidalSin = 0;
	double toroidalCos = 0;
	double poloidalAngle = 0;
	double poloidalSin = 0;

	estimateToroidalAndPoloidalAngleOfPoint(
		pna,
		pointIn,
		&toroidalSin,
		&toroidalCos,
		&poloidalAngle,
		&poloidalSin);

	Point torusPoint = calculateTorusPointFromAngles(pna, toroidalSin, toroidalCos, poloidalAngle, poloidalSin);

	FLT dist = distance(pointIn, torusPoint);

	// This is some voodoo black magic.  This is here to solve the problem that the origin 
	// (which is near the center of all the tori) erroniously will rank as a good match.
	// through a lot of empiracle testing on how to compensate for this, the "fudge factor"
	// below ended up being the best fit.  As simple as it is, I have a strong suspicion
	// that there's some crazy complex thesis-level math that could be used to derive this
	// but it works so we'll run with it.
	// Note that this may be resulting in a skewing of the found location by several millimeters.
	// it is not clear if this is actually removing existing skew (to get a more accurate value)
	// or if it is introducing an undesirable skew.
	double fudge = FLT_SIN((poloidalAngle - M_PI) / 2);
	dist = dist / fudge;

	return dist;
}

FLT getPointFitness(Point pointIn, PointsAndAngle *pna, size_t pnaCount)
{
	FLT fitness;

	FLT resultSum=0;

	for (size_t i = 0; i < pnaCount; i++)
	{
		fitness = getPointFitnessForPna(pointIn, &(pna[i]));
		resultSum += SQUARED(fitness);
	}

	return 1/FLT_SQRT(resultSum);
}

Point getGradient(Point pointIn, PointsAndAngle *pna, size_t pnaCount, FLT precision)
{
	Point result;

	Point tmpXplus = pointIn;
	Point tmpXminus = pointIn;
	tmpXplus.x = pointIn.x + precision;
	tmpXminus.x = pointIn.x - precision;
	result.x = getPointFitness(tmpXplus, pna, pnaCount) - getPointFitness(tmpXminus, pna, pnaCount);

	Point tmpYplus = pointIn;
	Point tmpYminus = pointIn;
	tmpYplus.y = pointIn.y + precision;
	tmpYminus.y = pointIn.y - precision;
	result.y = getPointFitness(tmpYplus, pna, pnaCount) - getPointFitness(tmpYminus, pna, pnaCount);

	Point tmpZplus = pointIn;
	Point tmpZminus = pointIn;
	tmpZplus.z = pointIn.z + precision;
	tmpZminus.z = pointIn.z - precision;
	result.z = getPointFitness(tmpZplus, pna, pnaCount) - getPointFitness(tmpZminus, pna, pnaCount);

	return result;
}

Point getNormalizedVector(Point vectorIn, FLT desiredMagnitude)
{
	FLT distanceIn = sqrt(SQUARED(vectorIn.x) + SQUARED(vectorIn.y) + SQUARED(vectorIn.z));

	FLT scale = desiredMagnitude / distanceIn;

	Point result = vectorIn;

	result.x *= scale;
	result.y *= scale;
	result.z *= scale;

	return result;
}

Point getAvgPoints(Point a, Point b)
{
	Point result;
	result.x = (a.x + b.x) / 2;
	result.y = (a.y + b.y) / 2;
	result.z = (a.z + b.z) / 2;
	return result;
}


// This is modifies the basic gradient descent algorithm to better handle the shallow valley case,
// which appears to be typical of this convergence.  
static Point RefineEstimateUsingModifiedGradientDescent1(Point initialEstimate, PointsAndAngle *pna, size_t pnaCount, FILE *logFile)
{
	int i = 0;
	FLT lastMatchFitness = getPointFitness(initialEstimate, pna, pnaCount);
	Point lastPoint = initialEstimate;

	// The values below are somewhat magic, and definitely tunable
	// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
	//   bigger values may be faster, especially when the initial guess is wildly off.
	//   The downside to a bigger starting guess is that if we've picked a good guess at the local minima
	//   if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
	//   That's fairly unlikely with the lighthouse problem, from expereince.
	//   The other downside is that if it's too big, we may have to spend a few iterations before it gets down
	//   to a size that doesn't jump us out of our minima.
	// The terminal value of g represents how close we want to get to the local minima before we're "done"
	// The change in value of g for each iteration is intentionally very close to 1.
	//   in fact, it probably could probably be 1 without any issue.  The main place where g is decremented
	//   is in the block below when we've made a jump that results in a worse fitness than we're starting at.
	//   In those cases, we don't take the jump, and instead lower the value of g and try again.
	for (FLT g = 0.2; g > 0.00001; g *= 0.99)
	{
		i++;
		Point point1 = lastPoint;
		// let's get 3 iterations of gradient descent here.
		Point gradient1 = getGradient(point1, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
		Point gradientN1 = getNormalizedVector(gradient1, g);

		Point point2;
		point2.x = point1.x + gradientN1.x;
		point2.y = point1.y + gradientN1.y;
		point2.z = point1.z + gradientN1.z;

		Point gradient2 = getGradient(point2, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
		Point gradientN2 = getNormalizedVector(gradient2, g);

		Point point3;
		point3.x = point2.x + gradientN2.x;
		point3.y = point2.y + gradientN2.y;
		point3.z = point2.z + gradientN2.z;

		// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
		// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
		// gradient descent is kinda horrible here.  Instead, think about the shape that a zig-zagging 
		// converging gradient descent makes.  Instead of using the gradient as the best indicator of 
		// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
		// following *that* vector.  As it turns out, this works *amazingly* well.  

		Point specialGradient = { .x = point3.x - point1.x, .y = point3.y - point1.y, .z = point3.y - point1.y };

		// The second parameter to this function is very much a tunable parameter.  Different values will result
		// in a different number of iterations before we get to the minimum.  Numbers between 3-10 seem to work well
		// It's not clear what would be optimum here.
		specialGradient = getNormalizedVector(specialGradient, g/4);

		Point point4;

		point4.x = point3.x + specialGradient.x;
		point4.y = point3.y + specialGradient.y;
		point4.z = point3.z + specialGradient.z;

		FLT newMatchFitness = getPointFitness(point4, pna, pnaCount);

		if (newMatchFitness > lastMatchFitness)
		{
			if (logFile)
			{
				writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
			}

			lastMatchFitness = newMatchFitness;
			lastPoint = point4;
#ifdef TORI_DEBUG
			printf("+");
#endif
		}
		else
		{
#ifdef TORI_DEBUG
			printf("-");
#endif
			g *= 0.7;

		}


	}
	printf("\ni=%d\n", i);

	return lastPoint;
}


// interesting-- this is one place where we could use any sensors that are only hit by
// just an x or y axis to make our estimate better.  TODO: bring that data to this fn.
FLT RotationEstimateFitness(Point lhPoint, FLT *quaternion, TrackedObject *obj)
{
	for (size_t i = 0; i < obj->numSensors; i++)
	{
		// first, get the normal of the plane for the horizonal sweep
		FLT theta = obj->sensor[i].theta;
		// make two vectors that lie on the plane
		FLT t1[3] = { 1, tan(theta), 0 };
		FLT t2[3] = { 1, tan(theta), 1 };

		FLT tNorm[3];

		// the normal is the cross of two vectors on the plane.
		cross3d(tNorm, t1, t2);

		// distance for this plane is d= fabs(A*x + B*y)/sqrt(A^2+B^2) (z term goes away since this plane is "vertical")
		// where A is 
		//FLT d = 
	}
}

static Point RefineRotationEstimate(Point initialEstimate, PointsAndAngle *pna, size_t pnaCount, FILE *logFile)
{
	int i = 0;
	FLT lastMatchFitness = getPointFitness(initialEstimate, pna, pnaCount);
	Point lastPoint = initialEstimate;

	// The values below are somewhat magic, and definitely tunable
	// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
	//   bigger values may be faster, especially when the initial guess is wildly off.
	//   The downside to a bigger starting guess is that if we've picked a good guess at the local minima
	//   if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
	//   That's fairly unlikely with the lighthouse problem, from expereince.
	//   The other downside is that if it's too big, we may have to spend a few iterations before it gets down
	//   to a size that doesn't jump us out of our minima.
	// The terminal value of g represents how close we want to get to the local minima before we're "done"
	// The change in value of g for each iteration is intentionally very close to 1.
	//   in fact, it probably could probably be 1 without any issue.  The main place where g is decremented
	//   is in the block below when we've made a jump that results in a worse fitness than we're starting at.
	//   In those cases, we don't take the jump, and instead lower the value of g and try again.
	for (FLT g = 0.2; g > 0.00001; g *= 0.99)
	{
		i++;
		Point point1 = lastPoint;
		// let's get 3 iterations of gradient descent here.
		Point gradient1 = getGradient(point1, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
		Point gradientN1 = getNormalizedVector(gradient1, g);

		Point point2;
		point2.x = point1.x + gradientN1.x;
		point2.y = point1.y + gradientN1.y;
		point2.z = point1.z + gradientN1.z;

		Point gradient2 = getGradient(point2, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
		Point gradientN2 = getNormalizedVector(gradient2, g);

		Point point3;
		point3.x = point2.x + gradientN2.x;
		point3.y = point2.y + gradientN2.y;
		point3.z = point2.z + gradientN2.z;

		// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
		// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
		// gradient descent is kinda horrible here.  Instead, think about the shape that a zig-zagging 
		// converging gradient descent makes.  Instead of using the gradient as the best indicator of 
		// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
		// following *that* vector.  As it turns out, this works *amazingly* well.  

		Point specialGradient = { .x = point3.x - point1.x, .y = point3.y - point1.y, .z = point3.y - point1.y };

		// The second parameter to this function is very much a tunable parameter.  Different values will result
		// in a different number of iterations before we get to the minimum.  Numbers between 3-10 seem to work well
		// It's not clear what would be optimum here.
		specialGradient = getNormalizedVector(specialGradient, g / 4);

		Point point4;

		point4.x = point3.x + specialGradient.x;
		point4.y = point3.y + specialGradient.y;
		point4.z = point3.z + specialGradient.z;

		FLT newMatchFitness = getPointFitness(point4, pna, pnaCount);

		if (newMatchFitness > lastMatchFitness)
		{
			if (logFile)
			{
				writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
			}

			lastMatchFitness = newMatchFitness;
			lastPoint = point4;
#ifdef TORI_DEBUG
			printf("+");
#endif
		}
		else
		{
#ifdef TORI_DEBUG
			printf("-");
#endif
			g *= 0.7;

		}


	}
	printf("\ni=%d\n", i);

	return lastPoint;
}

void SolveForRotation(FLT rotOut[4], TrackedObject *obj, Point lh)
{

	// Step 1, create initial quaternion for guess.  
	// This should have the lighthouse directly facing the tracked object.
	Point trackedObjRelativeToLh = { .x = -lh.x, .y = -lh.y, .z = -lh.z };
	FLT theta = atan2(-lh.x, -lh.y);
	FLT zAxis[3] = { 0, 0, 1 };
	FLT quat1[4];
	quatfromaxisangle(quat1, zAxis, theta);
	// not correcting for phi, but that's less important.

	// Step 2, optimize the quaternion to match the data.

}


Point SolveForLighthouse(TrackedObject *obj, char doLogOutput)
{
	PointsAndAngle pna[MAX_POINT_PAIRS];

	volatile size_t sizeNeeded = sizeof(pna);

	Point avgNorm = { 0 };

	size_t pnaCount = 0;
	for (unsigned int i = 0; i < obj->numSensors; i++)
	{
		for (unsigned int j = 0; j < i; j++)
		{
			if (pnaCount < MAX_POINT_PAIRS)
			{
				pna[pnaCount].a = obj->sensor[i].point;
				pna[pnaCount].b = obj->sensor[j].point;
				
				pna[pnaCount].angle = angleBetweenSensors(&obj->sensor[i], &obj->sensor[j]);
				//pna[pnaCount].angle = pythAngleBetweenSensors2(&obj->sensor[i], &obj->sensor[j]);
				pna[pnaCount].tanAngle = FLT_TAN(pna[pnaCount].angle);

				double pythAngle = sqrt(SQUARED(obj->sensor[i].phi - obj->sensor[j].phi) + SQUARED(obj->sensor[i].theta - obj->sensor[j].theta));

				pna[pnaCount].rotation = GetRotationMatrixForTorus(pna[pnaCount].a, pna[pnaCount].b);
				pna[pnaCount].invRotation = inverseM33(pna[pnaCount].rotation);


				pnaCount++;
			}
		}

		avgNorm.x += obj->sensor[i].normal.x;
		avgNorm.y += obj->sensor[i].normal.y;
		avgNorm.z += obj->sensor[i].normal.z;
	}
	avgNorm.x = avgNorm.x / obj->numSensors;
	avgNorm.y = avgNorm.y / obj->numSensors;
	avgNorm.z = avgNorm.z / obj->numSensors;

	FLT avgNormF[3] = { avgNorm.x, avgNorm.y, avgNorm.z };


	FILE *logFile = NULL;
	if (doLogOutput)
	{
		logFile = fopen("pointcloud2.pcd", "wb");
		writePcdHeader(logFile);
		writeAxes(logFile);
	}


	// Point refinedEstimageGd = RefineEstimateUsingModifiedGradientDescent1(initialEstimate, pna, pnaCount, logFile);


	// arbitrarily picking a value of 8 meters out to start from.
	// intentionally picking the direction of the average normal vector of the sensors that see the lighthouse
	// since this is least likely to pick the incorrect "mirror" point that would send us 
	// back into the search for the correct point (see "if (a1 > M_PI / 2)" below)
	Point p1 = getNormalizedVector(avgNorm, 8); 

	Point refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p1, pna, pnaCount, logFile);

	FLT pf1[3] = { refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z };

	FLT a1 = anglebetween3d(pf1, avgNormF);

	if (a1 > M_PI / 2)
	{
		Point p2 = { .x = -refinedEstimateGd.x, .y = -refinedEstimateGd.y, .z = -refinedEstimateGd.z };
		refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p2, pna, pnaCount, logFile);

		//FLT pf2[3] = { refinedEstimageGd2.x, refinedEstimageGd2.y, refinedEstimageGd2.z };

		//FLT a2 = anglebetween3d(pf2, avgNormF);

	}

	FLT fitGd = getPointFitness(refinedEstimateGd, pna, pnaCount);

	printf("Fitness is %f\n", fitGd);

	if (logFile)
	{
		updateHeader(logFile);
		fclose(logFile);
	}
	//fgetc(stdin);
	return refinedEstimateGd;
}