1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
#include <stdio.h>
#include <stdlib.h>
#include "linmath.h"
#include <string.h>
#include <stdint.h>
#include <math.h>
#define PTS 32
#define MAX_CHECKS 40000
#define MIN_HITS_FOR_VALID 10
FLT hmd_points[PTS*3];
FLT hmd_norms[PTS*3];
FLT hmd_point_angles[PTS*2];
int hmd_point_counts[PTS*2];
int best_hmd_target = 0;
int LoadData( char Camera, const char * FileData );
//Values used for RunTest()
FLT LighthousePos[3] = { 0, 0, 0 };
FLT LighthouseQuat[4] = { 1, 0, 0, 0 };
FLT RunTest( int print );
void PrintOpti();
#define MAX_POINT_PAIRS 100
typedef struct
{
FLT x;
FLT y;
FLT z;
} Point;
typedef struct
{
Point point; // location of the sensor on the tracked object;
Point normal; // unit vector indicating the normal for the sensor
double theta; // "horizontal" angular measurement from lighthouse radians
double phi; // "vertical" angular measurement from lighthouse in radians.
} TrackedSensor;
typedef struct
{
size_t numSensors;
TrackedSensor sensor[0];
} TrackedObject;
typedef struct
{
unsigned char index1;
unsigned char index2;
FLT KnownDistance;
} PointPair;
static FLT distance(Point a, Point b)
{
FLT x = a.x - b.x;
FLT y = a.y - b.y;
FLT z = a.z - b.z;
return FLT_SQRT(x*x + y*y + z*z);
}
typedef struct
{
FLT HorizAngle;
FLT VertAngle;
} SensorAngles;
#define SQUARED(x) ((x)*(x))
FLT calculateFitnessOld(SensorAngles *angles, FLT *radii, PointPair *pairs, size_t numPairs)
{
FLT fitness = 0;
for (size_t i = 0; i < numPairs; i++)
{
FLT estimatedDistanceBetweenPoints =
SQUARED(radii[pairs[i].index1])
+ SQUARED(radii[pairs[i].index2])
- 2 * radii[pairs[i].index1] * radii[pairs[i].index2]
* FLT_SIN(angles[pairs[i].index1].HorizAngle) * FLT_SIN(angles[pairs[i].index2].HorizAngle)
* FLT_COS(angles[pairs[i].index1].VertAngle - angles[pairs[i].index2].VertAngle)
+ FLT_COS(angles[pairs[i].index1].VertAngle) * FLT_COS(angles[pairs[i].index2].VertAngle);
fitness += SQUARED(estimatedDistanceBetweenPoints - pairs[i].KnownDistance);
}
return FLT_SQRT(fitness);
}
FLT calculateFitness(SensorAngles *angles, FLT *radii, PointPair *pairs, size_t numPairs)
{
FLT fitness = 0;
for (size_t i = 0; i < numPairs; i++)
{
// These are the vectors that represent the direction for the two points.
// TODO: optimize by precomputing the tangent.
FLT v1[3], v2[3], diff[3];
v1[0] = 1;
v2[0] = 1;
v1[1] = tan(angles[pairs[i].index1].HorizAngle); // can be precomputed
v2[1] = tan(angles[pairs[i].index2].HorizAngle); // can be precomputed
v1[2] = tan(angles[pairs[i].index1].VertAngle); // can be precomputed
v2[2] = tan(angles[pairs[i].index2].VertAngle); // can be precomputed
// Now, normalize the vectors
normalize3d(v1, v1); // can be precomputed
normalize3d(v2, v2); // can be precomputed
// Now, given the specified radii, find where the new points are
scale3d(v1, v1, radii[pairs[i].index1]);
scale3d(v2, v2, radii[pairs[i].index2]);
// Cool, now find the vector between these two points
// TODO: optimize the following two funcs into one.
sub3d(diff, v1, v2);
FLT distance = magnitude3d(diff);
FLT t1 = magnitude3d(v1);
FLT t2 = magnitude3d(v2);
FLT estimatedDistanceBetweenPoints =
SQUARED(radii[pairs[i].index1])
+ SQUARED(radii[pairs[i].index2])
- 2 * radii[pairs[i].index1] * radii[pairs[i].index2]
* FLT_SIN(angles[pairs[i].index1].HorizAngle) * FLT_SIN(angles[pairs[i].index2].HorizAngle)
* FLT_COS(angles[pairs[i].index1].VertAngle - angles[pairs[i].index2].VertAngle)
+ FLT_COS(angles[pairs[i].index1].VertAngle) * FLT_COS(angles[pairs[i].index2].VertAngle);
//fitness += SQUARED(estimatedDistanceBetweenPoints - pairs[i].KnownDistance);
fitness += SQUARED(distance - pairs[i].KnownDistance);
}
return FLT_SQRT(fitness);
}
#define MAX_RADII 32
// note gradientOut will be of the same degree as numRadii
void getGradient(FLT *gradientOut, SensorAngles *angles, FLT *radii, size_t numRadii, PointPair *pairs, size_t numPairs, const FLT precision)
{
FLT baseline = calculateFitness(angles, radii, pairs, numPairs);
for (size_t i = 0; i < numRadii; i++)
{
FLT tmpPlus[MAX_RADII];
memcpy(tmpPlus, radii, sizeof(*radii) * numRadii);
tmpPlus[i] += precision;
gradientOut[i] = -(calculateFitness(angles, tmpPlus, pairs, numPairs) - baseline);
}
return;
}
void normalizeAndMultiplyVector(FLT *vectorToNormalize, size_t count, FLT desiredMagnitude)
{
FLT distanceIn = 0;
for (size_t i = 0; i < count; i++)
{
distanceIn += SQUARED(vectorToNormalize[i]);
}
distanceIn = FLT_SQRT(distanceIn);
FLT scale = desiredMagnitude / distanceIn;
for (size_t i = 0; i < count; i++)
{
vectorToNormalize[i] *= scale;
}
return;
}
static RefineEstimateUsingGradientDescent(FLT *estimateOut, SensorAngles *angles, FLT *initialEstimate, size_t numRadii, PointPair *pairs, size_t numPairs, FILE *logFile)
{
int i = 0;
FLT lastMatchFitness = calculateFitness(angles, initialEstimate, pairs, numPairs);
if (estimateOut != initialEstimate)
{
memcpy(estimateOut, initialEstimate, sizeof(*estimateOut) * numRadii);
}
// The values below are somewhat magic, and definitely tunable
// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
// bigger values may be faster, especially when the initial guess is wildly off.
// The downside to a bigger starting guess is that if we've picked a good guess at the local minima
// if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
// That's fairly unlikely with the lighthouse problem, from expereince.
// The other downside is that if it's too big, we may have to spend a few iterations before it gets down
// to a size that doesn't jump us out of our minima.
// The terminal value of g represents how close we want to get to the local minima before we're "done"
// The change in value of g for each iteration is intentionally very close to 1.
// in fact, it probably could probably be 1 without any issue. The main place where g is decremented
// is in the block below when we've made a jump that results in a worse fitness than we're starting at.
// In those cases, we don't take the jump, and instead lower the value of g and try again.
for (FLT g = 0.4; g > 0.00001; g *= 0.9999)
{
i++;
FLT point1[MAX_RADII];
memcpy(point1, estimateOut, sizeof(*point1) * numRadii);
// let's get 3 iterations of gradient descent here.
FLT gradient1[MAX_RADII];
getGradient(gradient1, angles, point1, numRadii, pairs, numPairs, g / 1000 /*somewhat arbitrary*/);
normalizeAndMultiplyVector(gradient1, numRadii, g);
FLT point2[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point2[i] = point1[i] + gradient1[i];
}
FLT gradient2[MAX_RADII];
getGradient(gradient2, angles, point2, numRadii, pairs, numPairs, g / 1000 /*somewhat arbitrary*/);
normalizeAndMultiplyVector(gradient2, numRadii, g);
FLT point3[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point3[i] = point2[i] + gradient2[i];
}
// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
// gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
// converging gradient descent makes. Instead of using the gradient as the best indicator of
// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
// following *that* vector. As it turns out, this works *amazingly* well.
FLT specialGradient[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
specialGradient[i] = point3[i] - point1[i];
}
// The second parameter to this function is very much a tunable parameter. Different values will result
// in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
// It's not clear what would be optimum here.
normalizeAndMultiplyVector(specialGradient, numRadii, g/4);
FLT point4[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point4[i] = point3[i] + specialGradient[i];
}
FLT newMatchFitness = calculateFitness(angles, point4, pairs, numPairs);
if (newMatchFitness < lastMatchFitness)
{
//if (logFile)
//{
// writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
//}
lastMatchFitness = newMatchFitness;
memcpy(estimateOut, point4, sizeof(*estimateOut) * numRadii);
#ifdef RADII_DEBUG
printf("+ %d %0.9f (%0.9f) ", i, newMatchFitness, g);
#endif
g = g * 1.05;
}
else
{
#ifdef RADII_DEBUG
// printf("-");
printf("- %d %0.9f (%0.9f) ", i, newMatchFitness, g);
#endif
// if it wasn't a match, back off on the distance we jump
g *= 0.7;
}
#ifdef RADII_DEBUG
FLT avg=0;
FLT diffFromAvg[MAX_RADII];
for (size_t m = 0; m < numRadii; m++)
{
avg += estimateOut[m];
}
avg = avg / numRadii;
for (size_t m = 0; m < numRadii; m++)
{
diffFromAvg[m] = estimateOut[m] - avg;;
}
printf("[avg:%f] ", avg);
for (size_t x = 0; x < numRadii; x++)
{
printf("%f, ", diffFromAvg[x]);
//printf("%f, ", estimateOut[x]);
}
printf("\n");
#endif
}
printf("\ni=%d\n", i);
}
void SolveForLighthouse(Point *objPosition, FLT *objOrientation, TrackedObject *obj)
{
FLT estimate[MAX_RADII];
for (size_t i = 0; i < MAX_RADII; i++)
{
estimate[i] = 2.4;
}
SensorAngles angles[MAX_RADII];
PointPair pairs[MAX_POINT_PAIRS];
size_t pairCount = 0;
obj->numSensors = 7; // TODO: HACK!!!!
for (size_t i = 0; i < obj->numSensors; i++)
{
angles[i].HorizAngle = obj->sensor[i].theta;
angles[i].VertAngle = obj->sensor[i].phi;
}
for (size_t i = 0; i < obj->numSensors - 1; i++)
{
for (size_t j = i + 1; j < obj->numSensors; j++)
{
pairs[pairCount].index1 = i;
pairs[pairCount].index2 = j;
pairs[pairCount].KnownDistance = distance(obj->sensor[i].point, obj->sensor[j].point);
pairCount++;
}
}
RefineEstimateUsingGradientDescent(estimate, angles, estimate, obj->numSensors, pairs, pairCount, NULL);
// we should now have an estimate of the radii.
for (size_t i = 0; i < obj->numSensors; i++)
{
printf("radius[%d]: %f\n", i, estimate[i]);
}
// (FLT *estimateOut, SensorAngles *angles, FLT *initialEstimate, size_t numRadii, PointPair *pairs, size_t numPairs, FILE *logFile)
getc(stdin);
return;
}
static void runTheNumbers()
{
TrackedObject *to;
to = malloc(sizeof(TrackedObject) + (PTS * sizeof(TrackedSensor)));
int sensorCount = 0;
for (int i = 0; i < PTS; i++)
{
// if there are enough valid counts for both the x and y sweeps for sensor i
if ((hmd_point_counts[2 * i] > MIN_HITS_FOR_VALID) &&
(hmd_point_counts[2 * i + 1] > MIN_HITS_FOR_VALID))
{
to->sensor[sensorCount].point.x = hmd_points[i * 3 + 0];
to->sensor[sensorCount].point.y = hmd_points[i * 3 + 1];
to->sensor[sensorCount].point.z = hmd_points[i * 3 + 2];
to->sensor[sensorCount].normal.x = hmd_norms[i * 3 + 0];
to->sensor[sensorCount].normal.y = hmd_norms[i * 3 + 1];
to->sensor[sensorCount].normal.z = hmd_norms[i * 3 + 2];
to->sensor[sensorCount].theta = hmd_point_angles[i * 2 + 0] + LINMATHPI / 2;
to->sensor[sensorCount].phi = hmd_point_angles[i * 2 + 1] + LINMATHPI / 2;
sensorCount++;
}
}
to->numSensors = sensorCount;
printf("Using %d sensors to find lighthouse.\n", sensorCount);
Point lh;
for (int i = 0; i < 1; i++)
{
SolveForLighthouse(&lh, NULL, to);
//(0.156754, -2.403268, 2.280167)
//assert(fabs((lh.x / 0.1419305302702402) - 1) < 0.00001);
//assert(fabs((lh.y / 2.5574949720325431) - 1) < 0.00001);
//assert(fabs((lh.z / 2.2451193935772080) - 1) < 0.00001);
//assert(lh.x > 0);
//assert(lh.y > 0);
//assert(lh.z > 0);
}
printf("(%f, %f, %f)\n", lh.x, lh.y, lh.z);
//printTrackedObject(to);
free(to);
}
int main( int argc, char ** argv )
{
if( argc != 3 )
{
fprintf( stderr, "Error: usage: camfind [camera (L or R)] [datafile]\n" );
exit( -1 );
}
//Load either 'L' (LH1) or 'R' (LH2) data.
if( LoadData( argv[1][0], argv[2] ) ) return 5;
runTheNumbers();
}
int LoadData( char Camera, const char * datafile )
{
//First, read the positions of all the sensors on the HMD.
FILE * f = fopen( "HMD_points.csv", "r" );
int pt = 0;
if( !f ) { fprintf( stderr, "error: can't open hmd points.\n" ); return -5; }
while(!feof(f) && !ferror(f) && pt < PTS)
{
float fa, fb, fc;
int r = fscanf( f,"%g %g %g\n", &fa, &fb, &fc );
hmd_points[pt*3+0] = fa;
hmd_points[pt*3+1] = fb;
hmd_points[pt*3+2] = fc;
pt++;
if( r != 3 )
{
fprintf( stderr, "Not enough entries on line %d of points\n", pt );
return -8;
}
}
if( pt < PTS )
{
fprintf( stderr, "Not enough points.\n" );
return -9;
}
fclose( f );
printf( "Loaded %d points\n", pt );
//Read all the normals on the HMD into hmd_norms.
f = fopen( "HMD_normals.csv", "r" );
int nrm = 0;
if( !f ) { fprintf( stderr, "error: can't open hmd points.\n" ); return -5; }
while(!feof(f) && !ferror(f) && nrm < PTS)
{
float fa, fb, fc;
int r = fscanf( f,"%g %g %g\n", &fa, &fb, &fc );
hmd_norms[nrm*3+0] = fa;
hmd_norms[nrm*3+1] = fb;
hmd_norms[nrm*3+2] = fc;
nrm++;
if( r != 3 )
{
fprintf( stderr, "Not enough entries on line %d of normals\n", nrm );
return -8;
}
}
if( nrm < PTS )
{
fprintf( stderr, "Not enough points.\n" );
return -9;
}
if( nrm != pt )
{
fprintf( stderr, "point/normal counts disagree.\n" );
return -9;
}
fclose( f );
printf( "Loaded %d norms\n", nrm );
//Actually load the processed data!
int xck = 0;
f = fopen( datafile, "r" );
if( !f )
{
fprintf( stderr, "Error: cannot open %s\n", datafile );
exit (-11);
}
int lineno = 0;
while( !feof( f ) )
{
//Format:
// HMD LX 0 3433 173656.227498 327.160210 36.342361 2.990936
lineno++;
char devn[10];
char inn[10];
int id;
int pointct;
FLT avgTime;
FLT avgLen;
FLT stddevTime;
FLT stddevLen;
int ct = fscanf( f, "%9s %9s %d %d %lf %lf %lf %lf\n", devn, inn, &id, &pointct, &avgTime, &avgLen, &stddevTime, &stddevLen );
if( ct == 0 ) continue;
if( ct != 8 )
{
fprintf( stderr, "Malformatted line, %d in processed_data.txt\n", lineno );
}
if( strcmp( devn, "HMD" ) != 0 ) continue;
if( inn[0] != Camera ) continue;
int isy = inn[1] == 'Y';
hmd_point_angles[id*2+isy] = ( avgTime - 200000 ) / 200000 * 3.1415926535/2.0;
hmd_point_counts[id*2+isy] = pointct;
}
fclose( f );
int targpd;
int maxhits = 0;
for( targpd = 0; targpd < PTS; targpd++ )
{
int hits = hmd_point_counts[targpd*2+0];
if( hits > hmd_point_counts[targpd*2+1] ) hits = hmd_point_counts[targpd*2+1];
//Need an X and a Y lock.
if( hits > maxhits ) { maxhits = hits; best_hmd_target = targpd; }
}
if( maxhits < MIN_HITS_FOR_VALID )
{
fprintf( stderr, "Error: Not enough data for a primary fix.\n" );
}
return 0;
}
|