1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
#include <assert.h>
#include <iostream>
#include <libsurvive/survive.h>
#include <libsurvive/survive_reproject.h>
#include <map>
#include <math.h>
#include <memory>
#include <set>
#include <vector>
#include <sba/sba.h>
struct SBAData {
int last_acode = -1;
int last_lh = -1;
int failures_to_reset = 1;
int failures_to_reset_cntr = 0;
int successes_to_reset = 1;
int successes_to_reset_cntr = 0;
FLT sensor_variance = 1.;
FLT sensor_variance_per_second = 0;
int sensor_time_window = SurviveSensorActivations_default_tolerance;
int required_meas = 8;
};
struct PlaybackDataInput {
SurviveObject *so = nullptr;
SurvivePose position;
uint32_t timestamp;
std::vector<char> vmask;
std::vector<double> meas, cov;
SurviveSensorActivations activations;
PlaybackDataInput(SurviveObject *so, const SurvivePose &position)
: so(so), position(position), activations(so->activations) {
int32_t sensor_count = so->sensor_ct;
vmask.resize(sensor_count * NUM_LIGHTHOUSES);
cov.resize(4 * sensor_count * NUM_LIGHTHOUSES);
meas.resize(2 * sensor_count * NUM_LIGHTHOUSES);
}
void shrink(size_t new_size) {
cov.resize(4 * new_size);
meas.resize(2 * new_size);
}
~PlaybackDataInput() {}
};
struct PlaybackData {
SurviveObject *so = nullptr;
BaseStationData bsd[2];
std::vector<PlaybackDataInput> inputs;
};
SBAData settings;
static size_t construct_input_from_scene(SurviveObject *so, uint32_t timestamp, char *vmask, double *meas,
double *cov) {
size_t rtn = 0;
auto scene = &so->activations;
for (size_t sensor = 0; sensor < so->sensor_ct; sensor++) {
for (size_t lh = 0; lh < 2; lh++) {
if (SurviveSensorActivations_isPairValid(scene, settings.sensor_time_window, timestamp, sensor, lh)) {
double *a = scene->angles[sensor][lh];
vmask[sensor * NUM_LIGHTHOUSES + lh] = 1;
if (cov) {
*(cov++) = settings.sensor_variance +
std::abs((double)timestamp - scene->timecode[sensor][lh][0]) *
settings.sensor_variance_per_second / (double)so->timebase_hz;
*(cov++) = 0;
*(cov++) = 0;
*(cov++) = settings.sensor_variance +
std::abs((double)timestamp - scene->timecode[sensor][lh][1]) *
settings.sensor_variance_per_second / (double)so->timebase_hz;
}
meas[rtn++] = a[0];
meas[rtn++] = a[1];
} else {
vmask[sensor * NUM_LIGHTHOUSES + lh] = 0;
}
}
}
return rtn;
}
uint32_t timestamp;
void light_process(SurviveObject *so, int sensor_id, int acode, int timeinsweep, uint32_t timecode, uint32_t length,
uint32_t lighthouse) {
timestamp = timecode;
survive_default_light_process(so, sensor_id, acode, timeinsweep, timecode, length, lighthouse);
}
SurvivePose lastPose = {};
void pose_process(SurviveObject *so, uint32_t timecode, SurvivePose *pose) {
survive_default_raw_pose_process(so, timecode, pose);
PlaybackData *d = (PlaybackData *)so->ctx->user_ptr;
d->so = so;
d->inputs.emplace_back(so, *pose);
auto &input = d->inputs.back();
input.timestamp = timestamp;
int meas = construct_input_from_scene(so, timestamp, &input.vmask.front(), &input.meas.front(), &input.cov.front());
input.shrink(meas / 2);
double dist = 0;
if (d->inputs.empty() == false) {
dist = dist3d(pose->Pos, lastPose.Pos);
}
if (meas / 2 < 8 || dist > .00009)
d->inputs.pop_back();
lastPose = *pose;
}
void lighthouse_process(SurviveContext *ctx, uint8_t lighthouse, SurvivePose *pose, SurvivePose *obj_pose) {
survive_default_lighthouse_pose_process(ctx, lighthouse, pose, obj_pose);
PlaybackData *d = (PlaybackData *)ctx->user_ptr;
d->bsd[lighthouse] = ctx->bsd[lighthouse];
}
std::map<size_t, std::map<size_t, double>> errors;
typedef struct {
survive_calibration_config calibration_config;
SurviveObject *so;
SurvivePose obj_pose;
} sba_context;
static void str_metric_function(int j, int i, double *bi, double *xij, void *adata) {
SurvivePose obj = *(SurvivePose *)bi;
int sensor_idx = j >> 1;
int lh = j & 1;
sba_context *ctx = (sba_context *)(adata);
SurviveObject *so = ctx->so;
assert(lh < 2);
assert(sensor_idx < so->sensor_ct);
quatnormalize(obj.Rot, obj.Rot);
FLT xyz[3];
ApplyPoseToPoint(xyz, &obj, &so->sensor_locations[sensor_idx * 3]);
// std::cerr << "Processing " << sensor_idx << ", " << lh << std::endl;
SurvivePose *camera = &so->ctx->bsd[lh].Pose;
survive_reproject_from_pose_with_config(so->ctx, &ctx->calibration_config, lh, camera, xyz, xij);
}
double sba_opt(SurviveContext *ctx, const survive_calibration_config &config, PlaybackDataInput &data) {
double *covx = 0;
SurviveObject *so = data.so;
SurvivePose soLocation = data.position;
double opts[SBA_OPTSSZ] = {0};
double info[SBA_INFOSZ] = {0};
sba_context _ctx = {config, so};
opts[0] = SBA_INIT_MU;
opts[1] = SBA_STOP_THRESH;
opts[2] = SBA_STOP_THRESH;
opts[3] = SBA_STOP_THRESH;
opts[3] = SBA_STOP_THRESH; // max_reproj_error * meas.size();
opts[4] = 0.0;
int status = sba_str_levmar(1, // Number of 3d points
0, // Number of 3d points to fix in spot
NUM_LIGHTHOUSES * so->sensor_ct, &data.vmask.front(),
soLocation.Pos, // Reads as the full pose though
7, // pnp -- SurvivePose
&data.meas.front(), // x* -- measurement data
&data.cov.front(), // cov data
2, // mnp -- 2 points per image
str_metric_function,
0, // jacobia of metric_func
&_ctx, // user data
100, // Max iterations
0, // verbosity
opts, // options
info); // info
int meas_size = data.meas.size() / 2;
if (meas_size == 0)
return 0;
{
SurviveContext *ctx = so->ctx;
// Docs say info[0] should be divided by meas; I don't buy it really...
static int cnt = 0;
if (cnt++ > 1000) {
SV_INFO("%f original reproj error for %u meas", (info[0] / meas_size * 2), (int)meas_size);
SV_INFO("%f cur reproj error", (info[1] / meas_size * 2));
cnt = 0;
}
}
assert(!isinf(info[1]));
return info[1] / meas_size * 2;
}
struct optimal_cal_ctx {
std::vector<double> sensors;
std::vector<int> lighthouses;
SurviveContext *ctx;
};
static void metric_function(int j, int i, double *aj, double *xij, void *adata) {
optimal_cal_ctx *ctx = (optimal_cal_ctx *)(adata);
FLT sensorInWorld[3] = {ctx->sensors[i * 3 + 0], ctx->sensors[i * 3 + 1], ctx->sensors[i * 3 + 2]};
int lh = ctx->lighthouses[i];
BaseStationData bsd = ctx->ctx->bsd[lh];
survive_calibration_config cfg = *(survive_calibration_config *)aj;
survive_reproject_from_pose_with_bsd(&bsd, &cfg, &ctx->ctx->bsd[lh].Pose, sensorInWorld, xij);
}
double find_optimal_cal(SurviveContext *ctx, PlaybackData &data) {
optimal_cal_ctx _ctx;
std::vector<char> vmask;
std::vector<double> cov, meas;
_ctx.ctx = ctx;
for (auto &in : data.inputs) {
for (size_t sensor = 0; sensor < in.so->sensor_ct; sensor++) {
FLT p[3];
ApplyPoseToPoint(p, &in.position, &data.so->sensor_locations[sensor * 3]);
for (size_t lh = 0; lh < 2; lh++) {
_ctx.sensors.emplace_back(p[0]);
_ctx.sensors.emplace_back(p[1]);
_ctx.sensors.emplace_back(p[2]);
_ctx.lighthouses.emplace_back(lh);
auto scene = &in.activations;
if (SurviveSensorActivations_isPairValid(scene, settings.sensor_time_window, in.timestamp, sensor,
lh)) {
double *a = scene->angles[sensor][lh];
vmask.emplace_back(1); //[sensor * NUM_LIGHTHOUSES + lh] = 1;
meas.emplace_back(a[0]);
meas.emplace_back(a[1]);
} else {
vmask.emplace_back(0);
}
}
}
}
double *covx = 0;
SurviveObject *so = data.so;
double opts[SBA_OPTSSZ] = {0};
double info[SBA_INFOSZ] = {0};
survive_calibration_config config = {0};
config.use_flag = SVCal_All;
opts[0] = SBA_INIT_MU;
opts[1] = SBA_STOP_THRESH;
opts[2] = SBA_STOP_THRESH;
opts[3] = SBA_STOP_THRESH;
opts[3] = SBA_STOP_THRESH; // max_reproj_error * meas.size();
opts[4] = 0.0;
int status = sba_mot_levmar(data.inputs.size() * so->sensor_ct * NUM_LIGHTHOUSES, // number of 3d points
1, // Number of cameras -- 2 lighthouses
0, // Number of cameras to not modify
&vmask[0], // boolean vis mask
(double *)&config, // camera parameters
4, // sizeof(BaseStationCal) / sizeof(FLT),
&meas[0], // 2d points for 3d objs
covx, // covariance of measurement. Null sets to identity
2, // 2 points per image
metric_function,
0, // jacobia of metric_func
&_ctx, // user data
50, // Max iterations
0, // verbosity
opts, // options
info); // info
if (status > 0) {
} else {
assert(false);
}
int meas_size = _ctx.sensors.size() / 2;
if (meas_size == 0)
return 0;
{
SurviveContext *ctx = so->ctx;
// Docs say info[0] should be divided by meas; I don't buy it really...
static int cnt = 0;
if (cnt++ > 1000) {
SV_INFO("%f original reproj error for %u meas", (info[0] / meas_size * 2), (int)meas_size);
SV_INFO("%f cur reproj error", (info[1] / meas_size * 2));
cnt = 0;
}
}
assert(!isinf(info[1]));
std::cerr << "Used " << meas_size << " measurements" << std::endl;
return info[1] / meas_size * 2;
}
double find_avg_reproj_error(SurviveContext *ctx, const survive_calibration_config &config, PlaybackDataInput &data) {
return sba_opt(ctx, config, data);
/*
for (size_t sensor = 0; sensor < data.so->sensor_ct; sensor++) {
for (size_t lh = 0; lh < 2; lh++) {
if( *(vmask++) ) {
cnt++;
FLT pt[3];
ApplyPoseToPoint(pt, &data.position, data.so->sensor_locations + sensor * 3);
FLT reproj_meas[2];
survive_reproject_from_pose_with_config(ctx, &config, lh, &ctx->bsd[lh].Pose, pt, reproj_meas);
auto x = reproj_meas[0] - meas[0];
auto y = reproj_meas[1] - meas[1];
err += cov[0]*x*x + cov[2]*y*y;
meas += 2;
cov += 4;
}
}
}*/
}
double find_avg_reproj_error(SurviveContext *ctx, const survive_calibration_config &config, PlaybackData &data) {
double err = 0;
for (auto &in : data.inputs) {
err += find_avg_reproj_error(ctx, config, in);
}
return err / data.inputs.size();
}
int main(int argc, char **argv) {
std::vector<std::pair<size_t, size_t>> sections = {
{5, 0}, // phase
//{ 5, 5 }, // tilt
//{ 5, 10 }, // curve
//{ 11, 15 } // gibs + useSin
};
for (int i = 1; i < argc; i++) {
PlaybackData data;
char const *args[] = {argv[0],
"--use-bsd-cal",
"0",
"--calibrate",
"--playback-factor",
"0",
"--disambiguator",
"StateBased",
"--defaultposer",
"SBA",
"--sba-required-meas",
"8",
"--sba-max-error",
".1",
"--playback",
argv[i]};
auto ctx = survive_init(sizeof(args) / sizeof(args[0]), (char *const *)args);
ctx->user_ptr = &data;
survive_install_pose_fn(ctx, pose_process);
survive_install_lighthouse_pose_fn(ctx, lighthouse_process);
survive_install_light_fn(ctx, light_process);
while (survive_poll(ctx) == 0) {
}
find_optimal_cal(ctx, data);
survive_close(ctx);
}
return 0;
}
|