1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
#include <survive.h>
#include <stdio.h>
#include <stdlib.h>
typedef struct
{
#define OLD_ANGLES_BUFF_LEN 3
FLT oldAngles[SENSORS_PER_OBJECT][2][NUM_LIGHTHOUSES][OLD_ANGLES_BUFF_LEN]; // sensor, sweep axis, lighthouse, instance
int angleIndex[NUM_LIGHTHOUSES][2]; // index into circular buffer ahead. separate index for each axis.
int lastAxis[NUM_LIGHTHOUSES];
int hitCount[SENSORS_PER_OBJECT][NUM_LIGHTHOUSES][2];
} OctavioRadiiData;
#include <stdio.h>
#include <stdlib.h>
#include "linmath.h"
#include <string.h>
#include <stdint.h>
#include <math.h>
#define PTS 32
#define MAX_CHECKS 40000
#define MIN_HITS_FOR_VALID 10
FLT hmd_points[PTS * 3];
FLT hmd_norms[PTS * 3];
FLT hmd_point_angles[PTS * 2];
int hmd_point_counts[PTS * 2];
int best_hmd_target = 0;
//Values used for RunTest()
FLT LighthousePos[3] = { 0, 0, 0 };
FLT LighthouseQuat[4] = { 1, 0, 0, 0 };
#define MAX_POINT_PAIRS 100
typedef struct
{
FLT x;
FLT y;
FLT z;
} Point;
typedef struct
{
Point point; // location of the sensor on the tracked object;
Point normal; // unit vector indicating the normal for the sensor
double theta; // "horizontal" angular measurement from lighthouse radians
double phi; // "vertical" angular measurement from lighthouse in radians.
int id;
} TrackedSensor;
typedef struct
{
size_t numSensors;
TrackedSensor sensor[0];
} TrackedObject;
typedef struct
{
unsigned char index1;
unsigned char index2;
FLT KnownDistance;
} PointPair;
static FLT distance(Point a, Point b)
{
FLT x = a.x - b.x;
FLT y = a.y - b.y;
FLT z = a.z - b.z;
return FLT_SQRT(x*x + y*y + z*z);
}
typedef struct
{
FLT HorizAngle;
FLT VertAngle;
} SensorAngles;
#define SQUARED(x) ((x)*(x))
static FLT calculateFitnessOld(SensorAngles *angles, FLT *radii, PointPair *pairs, size_t numPairs)
{
FLT fitness = 0;
for (size_t i = 0; i < numPairs; i++)
{
FLT estimatedDistanceBetweenPoints =
SQUARED(radii[pairs[i].index1])
+ SQUARED(radii[pairs[i].index2])
- 2 * radii[pairs[i].index1] * radii[pairs[i].index2]
* FLT_SIN(angles[pairs[i].index1].HorizAngle) * FLT_SIN(angles[pairs[i].index2].HorizAngle)
* FLT_COS(angles[pairs[i].index1].VertAngle - angles[pairs[i].index2].VertAngle)
+ FLT_COS(angles[pairs[i].index1].VertAngle) * FLT_COS(angles[pairs[i].index2].VertAngle);
fitness += SQUARED(estimatedDistanceBetweenPoints - pairs[i].KnownDistance);
}
return FLT_SQRT(fitness);
}
// angles is an array of angles between a sensor pair
// pairs is an array of point pairs
// radii is the guess at the radii of those angles
static FLT calculateFitnessOld2(SensorAngles *angles, FLT *radii, PointPair *pairs, size_t numPairs)
{
FLT fitness = 0;
for (size_t i = 0; i < numPairs; i++)
{
// These are the vectors that represent the direction for the two points.
// TODO: optimize by precomputing the tangent.
FLT v1[3], v2[3], diff[3];
v1[0] = 1;
v2[0] = 1;
v1[1] = tan(angles[pairs[i].index1].HorizAngle); // can be precomputed
v2[1] = tan(angles[pairs[i].index2].HorizAngle); // can be precomputed
v1[2] = tan(angles[pairs[i].index1].VertAngle); // can be precomputed
v2[2] = tan(angles[pairs[i].index2].VertAngle); // can be precomputed
// Now, normalize the vectors
normalize3d(v1, v1); // can be precomputed
normalize3d(v2, v2); // can be precomputed
// Now, given the specified radii, find where the new points are
scale3d(v1, v1, radii[pairs[i].index1]);
scale3d(v2, v2, radii[pairs[i].index2]);
// Cool, now find the vector between these two points
// TODO: optimize the following two funcs into one.
sub3d(diff, v1, v2);
FLT distance = magnitude3d(diff);
FLT t1 = magnitude3d(v1);
FLT t2 = magnitude3d(v2);
FLT estimatedDistanceBetweenPoints =
SQUARED(radii[pairs[i].index1])
+ SQUARED(radii[pairs[i].index2])
- 2 * radii[pairs[i].index1] * radii[pairs[i].index2]
* FLT_SIN(angles[pairs[i].index1].HorizAngle) * FLT_SIN(angles[pairs[i].index2].HorizAngle)
* FLT_COS(angles[pairs[i].index1].VertAngle - angles[pairs[i].index2].VertAngle)
+ FLT_COS(angles[pairs[i].index1].VertAngle) * FLT_COS(angles[pairs[i].index2].VertAngle);
//fitness += SQUARED(estimatedDistanceBetweenPoints - pairs[i].KnownDistance);
fitness += SQUARED(distance - pairs[i].KnownDistance);
}
return FLT_SQRT(fitness);
}
static FLT angleBetweenSensors(SensorAngles *a, SensorAngles *b)
{
FLT angle = FLT_ACOS(FLT_COS(a->VertAngle - b->VertAngle)*FLT_COS(a->HorizAngle - b->HorizAngle));
//FLT angle2 = FLT_ACOS(FLT_COS(b->phi - a->phi)*FLT_COS(b->theta - a->theta));
return angle;
}
// angles is an array of angles between a sensor pair
// pairs is an array of point pairs
// radii is the guess at the radii of those angles
static FLT calculateFitness(SensorAngles *angles, FLT *radii, PointPair *pairs, size_t numPairs)
{
FLT fitness = 0;
for (size_t i = 0; i < numPairs; i++)
{
FLT angle = angleBetweenSensors(&angles[pairs[i].index1], &angles[pairs[i].index2]);
// now we have a side-angle-side triangle, and we need to find the third side.
// The Law of Cosines says: a^2 = b^2 + c^2 ? 2bc * cosA,
// where A is the angle opposite side a.
// Transform this to:
// a = sqrt(b^2 + c^2 - 2bc * cosA) and we know the length of the missing side!
FLT b2 = (SQUARED(radii[pairs[i].index1]));
FLT c2 = (SQUARED(radii[pairs[i].index2]));
FLT bc2 = (2 * radii[pairs[i].index1] * radii[pairs[i].index2]);
FLT cosA = (FLT_COS(angle));
FLT angleInDegrees = angle * 180 / LINMATHPI;
FLT dist = sqrt( (SQUARED(radii[pairs[i].index1])) +
(SQUARED(radii[pairs[i].index2])) -
( (2 * radii[pairs[i].index1] * radii[pairs[i].index2]) *
(FLT_COS(angle))));
FLT fitnessAdder = SQUARED(dist - pairs[i].KnownDistance);
if (isnan(fitnessAdder))
{
int a = 0;
}
//printf(" %2d %f\n", i, fitnessAdder);
//fitness += SQUARED(estimatedDistanceBetweenPoints - pairs[i].KnownDistance);
fitness += SQUARED(dist - pairs[i].KnownDistance);
}
//fitness = 1 / fitness;
return FLT_SQRT(fitness);
}
#define MAX_RADII 32
// note gradientOut will be of the same degree as numRadii
static void getGradient(FLT *gradientOut, SensorAngles *angles, FLT *radii, size_t numRadii, PointPair *pairs, size_t numPairs, const FLT precision)
{
FLT baseline = calculateFitness(angles, radii, pairs, numPairs);
for (size_t i = 0; i < numRadii; i++)
{
FLT tmpPlus[MAX_RADII];
memcpy(tmpPlus, radii, sizeof(*radii) * numRadii);
tmpPlus[i] += precision;
gradientOut[i] = -(calculateFitness(angles, tmpPlus, pairs, numPairs) - baseline);
}
return;
}
static void normalizeAndMultiplyVector(FLT *vectorToNormalize, size_t count, FLT desiredMagnitude)
{
FLT distanceIn = 0;
for (size_t i = 0; i < count; i++)
{
distanceIn += SQUARED(vectorToNormalize[i]);
}
distanceIn = FLT_SQRT(distanceIn);
FLT scale = desiredMagnitude / distanceIn;
for (size_t i = 0; i < count; i++)
{
vectorToNormalize[i] *= scale;
}
return;
}
static RefineEstimateUsingGradientDescentRadii(FLT *estimateOut, SensorAngles *angles, FLT *initialEstimate, size_t numRadii, PointPair *pairs, size_t numPairs, FILE *logFile)
{
int i = 0;
FLT lastMatchFitness = calculateFitness(angles, initialEstimate, pairs, numPairs);
if (estimateOut != initialEstimate)
{
memcpy(estimateOut, initialEstimate, sizeof(*estimateOut) * numRadii);
}
// The values below are somewhat magic, and definitely tunable
// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
// bigger values may be faster, especially when the initial guess is wildly off.
// The downside to a bigger starting guess is that if we've picked a good guess at the local minima
// if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
// That's fairly unlikely with the lighthouse problem, from expereince.
// The other downside is that if it's too big, we may have to spend a few iterations before it gets down
// to a size that doesn't jump us out of our minima.
// The terminal value of g represents how close we want to get to the local minima before we're "done"
// The change in value of g for each iteration is intentionally very close to 1.
// in fact, it probably could probably be 1 without any issue. The main place where g is decremented
// is in the block below when we've made a jump that results in a worse fitness than we're starting at.
// In those cases, we don't take the jump, and instead lower the value of g and try again.
for (FLT g = 0.4; g > 0.00001; g *= 0.9999)
{
i++;
FLT point1[MAX_RADII];
memcpy(point1, estimateOut, sizeof(*point1) * numRadii);
// let's get 3 iterations of gradient descent here.
FLT gradient1[MAX_RADII];
getGradient(gradient1, angles, point1, numRadii, pairs, numPairs, g / 1000 /*somewhat arbitrary*/);
normalizeAndMultiplyVector(gradient1, numRadii, g);
FLT point2[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point2[i] = point1[i] + gradient1[i];
}
FLT gradient2[MAX_RADII];
getGradient(gradient2, angles, point2, numRadii, pairs, numPairs, g / 1000 /*somewhat arbitrary*/);
normalizeAndMultiplyVector(gradient2, numRadii, g);
FLT point3[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point3[i] = point2[i] + gradient2[i];
}
// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
// gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
// converging gradient descent makes. Instead of using the gradient as the best indicator of
// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
// following *that* vector. As it turns out, this works *amazingly* well.
FLT specialGradient[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
specialGradient[i] = point3[i] - point1[i];
}
// The second parameter to this function is very much a tunable parameter. Different values will result
// in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
// It's not clear what would be optimum here.
normalizeAndMultiplyVector(specialGradient, numRadii, g / 4);
FLT point4[MAX_RADII];
for (size_t i = 0; i < numRadii; i++)
{
point4[i] = point3[i] + specialGradient[i];
}
FLT newMatchFitness = calculateFitness(angles, point4, pairs, numPairs);
if (newMatchFitness < lastMatchFitness)
{
//if (logFile)
//{
// writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
//}
lastMatchFitness = newMatchFitness;
memcpy(estimateOut, point4, sizeof(*estimateOut) * numRadii);
#ifdef RADII_DEBUG
printf("+ %d %0.9f (%0.9f) \n", i, newMatchFitness, g);
#endif
g = g * 1.05;
}
else
{
//#ifdef RADII_DEBUG
// printf("-");
//printf("- %d %0.9f (%0.9f) [%0.9f] \n", i, newMatchFitness, g, estimateOut[0]);
//#endif
// if it wasn't a match, back off on the distance we jump
g *= 0.7;
}
#ifdef RADII_DEBUG
FLT avg = 0;
FLT diffFromAvg[MAX_RADII];
for (size_t m = 0; m < numRadii; m++)
{
avg += estimateOut[m];
}
avg = avg / numRadii;
for (size_t m = 0; m < numRadii; m++)
{
diffFromAvg[m] = estimateOut[m] - avg;;
}
printf("[avg:%f] ", avg);
for (size_t x = 0; x < numRadii; x++)
{
printf("%f, ", diffFromAvg[x]);
//printf("%f, ", estimateOut[x]);
}
printf("\n");
#endif
}
printf(" i=%d ", i);
}
static void SolveForLighthouseRadii(Point *objPosition, FLT *objOrientation, TrackedObject *obj)
{
FLT estimate[MAX_RADII];
for (size_t i = 0; i < MAX_RADII; i++)
{
estimate[i] = 2.38;
}
//for (int i=0; i < obj->numSensors; i++)
//{
// printf("%d, ", obj->sensor[i].id);
//}
SensorAngles angles[MAX_RADII];
PointPair pairs[MAX_POINT_PAIRS];
size_t pairCount = 0;
//obj->numSensors = 5; // TODO: HACK!!!!
for (size_t i = 0; i < obj->numSensors; i++)
{
angles[i].HorizAngle = obj->sensor[i].theta;
angles[i].VertAngle = obj->sensor[i].phi;
}
for (unsigned char i = 0; i < obj->numSensors - 1; i++)
{
for (unsigned char j = i + 1; j < obj->numSensors; j++)
{
pairs[pairCount].index1 = i;
pairs[pairCount].index2 = j;
pairs[pairCount].KnownDistance = distance(obj->sensor[i].point, obj->sensor[j].point);
pairCount++;
}
}
RefineEstimateUsingGradientDescentRadii(estimate, angles, estimate, obj->numSensors, pairs, pairCount, NULL);
// we should now have an estimate of the radii.
//for (int i = 0; i < obj->numSensors; i++)
for (int i = 0; i < 1; i++)
{
printf("radius[%d]: %f\n", i, estimate[i]);
}
// (FLT *estimateOut, SensorAngles *angles, FLT *initialEstimate, size_t numRadii, PointPair *pairs, size_t numPairs, FILE *logFile)
return;
}
static void QuickPose(SurviveObject *so)
{
OctavioRadiiData * td = so->PoserData;
//for (int i=0; i < so->nr_locations; i++)
//{
// FLT x0=td->oldAngles[i][0][0][td->angleIndex[0][0]];
// FLT y0=td->oldAngles[i][1][0][td->angleIndex[0][1]];
// //FLT x1=td->oldAngles[i][0][1][td->angleIndex[1][0]];
// //FLT y1=td->oldAngles[i][1][1][td->angleIndex[1][1]];
// //printf("%2d: %8.8f, %8.8f %8.8f, %8.8f \n",
// // i,
// // x0,
// // y0,
// // x1,
// // y1
// // );
// printf("%2d: %8.8f, %8.8f \n",
// i,
// x0,
// y0
// );
//}
//printf("\n");
TrackedObject *to;
to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
{
int sensorCount = 0;
for (int i = 0; i < so->nr_locations; i++)
{
int lh = 0;
//printf("%d[%d], ",i,td->hitCount[i][lh][0]);
int angleIndex0 = (td->angleIndex[lh][0] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
int angleIndex1 = (td->angleIndex[lh][1] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
if ((td->oldAngles[i][0][lh][angleIndex0] != 0 && td->oldAngles[i][1][lh][angleIndex1] != 0))
{
if (td->hitCount[i][lh][0] > 10 && td->hitCount[i][lh][1] > 10)
{
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
to->sensor[sensorCount].normal.z = norm[2];
to->sensor[sensorCount].point.x = point[0];
to->sensor[sensorCount].point.y = point[1];
to->sensor[sensorCount].point.z = point[2];
to->sensor[sensorCount].theta = td->oldAngles[i][0][lh][angleIndex0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = td->oldAngles[i][1][lh][angleIndex1] + LINMATHPI / 2; // lighthouse 0, angle 1 (vertical)
to->sensor[sensorCount].id=i;
//printf("%2d: %8.8f, %8.8f \n",
// i,
// to->sensor[sensorCount].theta,
// to->sensor[sensorCount].phi
// );
sensorCount++;
}
}
}
//printf("\n");
to->numSensors = sensorCount;
if (sensorCount > 4)
{
FLT pos[3];
FLT orient[4];
SolveForLighthouseRadii(pos, orient, to);
}
}
free(to);
}
int PoserOctavioRadii( SurviveObject * so, PoserData * pd )
{
PoserType pt = pd->pt;
SurviveContext * ctx = so->ctx;
OctavioRadiiData * dd = so->PoserData;
if( !dd )
{
so->PoserData = dd = malloc( sizeof(OctavioRadiiData) );
memset(dd, 0, sizeof(OctavioRadiiData));
}
switch( pt )
{
case POSERDATA_IMU:
{
PoserDataIMU * imu = (PoserDataIMU*)pd;
//printf( "IMU:%s (%f %f %f) (%f %f %f)\n", so->codename, imu->accel[0], imu->accel[1], imu->accel[2], imu->gyro[0], imu->gyro[1], imu->gyro[2] );
break;
}
case POSERDATA_LIGHT:
{
PoserDataLight * l = (PoserDataLight*)pd;
if (l->lh >= NUM_LIGHTHOUSES || l->lh < 0)
{
// should never happen. Famous last words...
break;
}
int axis = l->acode & 0x1;
//printf("%d ", l->sensor_id);
//printf( "LIG:%s %d @ %f rad, %f s (AC %d) (TC %d)\n", so->codename, l->sensor_id, l->angle, l->length, l->acode, l->timecode );
if ((dd->lastAxis[l->lh] != (l->acode & 0x1)) )
{
int lastAxis = dd->lastAxis[l->lh];
//printf("\n");
//if (0 == l->lh)
// printf("or[%d,%d] ", l->lh,lastAxis);
for (int i=0; i < SENSORS_PER_OBJECT; i++)
{
//FLT oldAngles[SENSORS_PER_OBJECT][2][NUM_LIGHTHOUSES][OLD_ANGLES_BUFF_LEN]; // sensor, sweep axis, lighthouse, instance
int index = dd->angleIndex[l->lh][axis];
if (dd->oldAngles[i][axis][l->lh][dd->angleIndex[l->lh][axis]] != 0)
{
//if (0 == l->lh)
// printf("%d ", i);
dd->hitCount[i][l->lh][axis]++;
}
else
{
dd->hitCount[i][l->lh][axis] *= 0.5;
}
}
//if (0 == l->lh)
// printf("\n");
//int foo = l->acode & 0x1;
//printf("%d", foo);
//if (axis)
{
if (0 == l->lh && axis) // only once per full cycle...
{
static unsigned int counter = 1;
counter++;
// let's just do this occasionally for now...
if (counter % 4 == 0)
QuickPose(so);
}
// axis changed, time to increment the circular buffer index.
dd->angleIndex[l->lh][axis]++;
dd->angleIndex[l->lh][axis] = dd->angleIndex[l->lh][axis] % OLD_ANGLES_BUFF_LEN;
// and clear out the data.
for (int i=0; i < SENSORS_PER_OBJECT; i++)
{
dd->oldAngles[i][axis][l->lh][dd->angleIndex[l->lh][axis]] = 0;
}
}
dd->lastAxis[l->lh] = axis;
}
//if (0 == l->lh)
// printf("(%d) ", l->sensor_id);
//FLT oldAngles[SENSORS_PER_OBJECT][2][NUM_LIGHTHOUSES][OLD_ANGLES_BUFF_LEN]; // sensor, sweep axis, lighthouse, instance
dd->oldAngles[l->sensor_id][axis][l->lh][dd->angleIndex[l->lh][axis]] = l->angle;
break; }
case POSERDATA_FULL_SCENE:
{
TrackedObject *to;
PoserDataFullScene * fs = (PoserDataFullScene*)pd;
to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
//FLT lengths[SENSORS_PER_OBJECT][NUM_LIGHTHOUSES][2];
//FLT angles[SENSORS_PER_OBJECT][NUM_LIGHTHOUSES][2]; //2 Axes (Angles in LH space)
//FLT synctimes[SENSORS_PER_OBJECT][NUM_LIGHTHOUSES];
//to->numSensors = so->nr_locations;
{
int sensorCount = 0;
for (int i = 0; i < so->nr_locations; i++)
{
if (fs->lengths[i][0][0] != -1 && fs->lengths[i][0][1] != -1) //lh 0
{
to->sensor[sensorCount].normal.x = so->sensor_normals[i * 3 + 0];
to->sensor[sensorCount].normal.y = so->sensor_normals[i * 3 + 1];
to->sensor[sensorCount].normal.z = so->sensor_normals[i * 3 + 2];
to->sensor[sensorCount].point.x = so->sensor_locations[i * 3 + 0];
to->sensor[sensorCount].point.y = so->sensor_locations[i * 3 + 1];
to->sensor[sensorCount].point.z = so->sensor_locations[i * 3 + 2];
to->sensor[sensorCount].theta = fs->angles[i][0][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = fs->angles[i][0][1] + LINMATHPI / 2; // lighthosue 0, angle 1 (vertical)
to->sensor[sensorCount].id=i;
sensorCount++;
}
}
to->numSensors = sensorCount;
Point position;
FLT orientation[4];
SolveForLighthouseRadii(&position, orientation, to);
}
{
int sensorCount = 0;
int lh = 1;
for (int i = 0; i < so->nr_locations; i++)
{
if (fs->lengths[i][lh][0] != -1 && fs->lengths[i][lh][1] != -1)
{
to->sensor[sensorCount].normal.x = so->sensor_normals[i * 3 + 0];
to->sensor[sensorCount].normal.y = so->sensor_normals[i * 3 + 1];
to->sensor[sensorCount].normal.z = so->sensor_normals[i * 3 + 2];
to->sensor[sensorCount].point.x = so->sensor_locations[i * 3 + 0];
to->sensor[sensorCount].point.y = so->sensor_locations[i * 3 + 1];
to->sensor[sensorCount].point.z = so->sensor_locations[i * 3 + 2];
to->sensor[sensorCount].theta = fs->angles[i][lh][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = fs->angles[i][lh][1] + LINMATHPI / 2; // lighthosue 0, angle 1 (vertical)
to->sensor[sensorCount].id=i;
sensorCount++;
}
}
to->numSensors = sensorCount;
Point position;
FLT orientation[4];
SolveForLighthouseRadii(&position, orientation, to);
}
//printf( "Full scene data.\n" );
break;
}
case POSERDATA_DISASSOCIATE:
{
free( dd );
so->PoserData = 0;
//printf( "Need to disassociate.\n" );
break;
}
}
return 0;
}
REGISTER_LINKTIME( PoserOctavioRadii );
|