aboutsummaryrefslogtreecommitdiff
path: root/src/poser_epnp.c
blob: e4164564426d350fb32bbfc4ad38ce242cdffbe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include "persistent_scene.h"

#ifndef USE_DOUBLE
#define FLT double
#define USE_DOUBLE
#endif

#include <poser.h>
#include <survive.h>

#include "epnp/epnp.h"
#include "linmath.h"
#include "math.h"
#include "stdio.h"

static SurvivePose solve_correspondence(SurviveObject *so, epnp *pnp, bool cameraToWorld) {
	SurvivePose rtn = {};
	// std::cerr << "Solving for " << cal_imagePoints.size() << " correspondents" << std::endl;
	if (pnp->number_of_correspondences <= 4) {
		SurviveContext *ctx = so->ctx;
		SV_INFO("Can't solve for only %u points\n", pnp->number_of_correspondences);
		return rtn;
	}

	double r[3][3];

	double err = epnp_compute_pose(pnp, r, rtn.Pos);

	CvMat R = cvMat(3, 3, CV_64F, r);
	CvMat T = cvMat(3, 1, CV_64F, rtn.Pos);
	// Requested output is camera -> world, so invert
	if (cameraToWorld) {
		FLT tmp[3];
		CvMat Tmp = cvMat(3, 1, CV_64F, tmp);
		cvCopyTo(&T, &Tmp);

		// Flip the Rotation matrix
		cvTranspose(&R, &R);
		// Then 'tvec = -R * tvec'
		cvGEMM(&R, &Tmp, -1, 0, 0, &T, 0);
		print_mat(&R);
		print_mat(&T);
	}

	FLT tmp[4];
	quatfrommatrix33(tmp, r[0]);

	// Typical camera applications have Z facing forward; the vive is contrarian and has Z going out of the
	// back of the lighthouse. Think of this as a rotation on the Y axis a full 180 degrees -- the quat for that is
	// [0 0x 1y 0z]
	const FLT rt[4] = {0, 0, 1, 0};
	quatrotateabout(rtn.Rot, tmp, rt);
	if (!cameraToWorld) {
		// We have to pre-multiply the rt transform here, which means we have to also offset our position by
		quatrotateabout(rtn.Rot, rt, tmp);
		rtn.Pos[0] = -rtn.Pos[0];
		rtn.Pos[2] = -rtn.Pos[2];
	}

	return rtn;
}

static int opencv_solver_fullscene(SurviveObject *so, PoserDataFullScene *pdfs) {

	for (int lh = 0; lh < 2; lh++) {
		epnp pnp = {.fu = 1, .fv = 1};
		epnp_set_maximum_number_of_correspondences(&pnp, so->sensor_ct);

		for (size_t i = 0; i < so->sensor_ct; i++) {
			FLT *lengths = pdfs->lengths[i][lh];
			FLT *ang = pdfs->angles[i][lh];
			if (lengths[0] < 0 || lengths[1] < 0)
				continue;

			epnp_add_correspondence(&pnp, so->sensor_locations[i * 3 + 0], so->sensor_locations[i * 3 + 1],
									so->sensor_locations[i * 3 + 2], tan(ang[0]), tan(ang[1]));
		}

		SurviveContext *ctx = so->ctx;
		SV_INFO("Solving for %d correspondents", pnp.number_of_correspondences);
		if (pnp.number_of_correspondences <= 4) {
			SV_INFO("Can't solve for only %d points on lh %d\n", pnp.number_of_correspondences, lh);
			continue;
		}

		SurvivePose lighthouse = solve_correspondence(so, &pnp, true);
		PoserData_lighthouse_pose_func(&pdfs->hdr, so, lh, &lighthouse);

		epnp_dtor(&pnp);
	}
	return 0;
}

struct add_correspondence_for_lh {
	epnp *pnp;
	int lh;
};

void add_correspondence_for_lh(SurviveObject *so, int lh, int sensor_idx, FLT *angles, void *_user) {
	struct add_correspondence_for_lh *user = (struct add_correspondence_for_lh *)_user;
	if (user->lh == lh)
		epnp_add_correspondence(user->pnp, so->sensor_locations[sensor_idx * 3 + 0],
								so->sensor_locations[sensor_idx * 3 + 1], so->sensor_locations[sensor_idx * 3 + 2],
								tan(angles[0]), tan(angles[1]));
}

int PoserEPNP(SurviveObject *so, PoserData *pd) {
	switch (pd->pt) {
	case POSERDATA_IMU: {
		// Really should use this...
		PoserDataIMU *imuData = (PoserDataIMU *)pd;
		return 0;
	}
	case POSERDATA_LIGHT: {
		static PersistentScene _scene = {.tolerance = 1500000};
		PersistentScene *scene = &_scene;
		PoserDataLight *lightData = (PoserDataLight *)pd;

		PersistentScene_add(scene, so, lightData);

		int lh = lightData->lh;
		if (so->ctx->bsd[lh].PositionSet) {
			epnp pnp = {.fu = 1, .fv = 1};
			epnp_set_maximum_number_of_correspondences(&pnp, so->sensor_ct);

			struct add_correspondence_for_lh user = {.lh = lh, .pnp = &pnp};
			PersistentScene_ForEachCorrespondence(scene, add_correspondence_for_lh, so, lightData->timecode, &user);

			if (pnp.number_of_correspondences > 4) {

				SurvivePose pose = solve_correspondence(so, &pnp, false);

				SurvivePose txPose = {};
				quatrotatevector(txPose.Pos, so->ctx->bsd[lh].Pose.Rot, pose.Pos);
				for (int i = 0; i < 3; i++) {
					txPose.Pos[i] += so->ctx->bsd[lh].Pose.Pos[i];
				}

				quatrotateabout(txPose.Rot, so->ctx->bsd[lh].Pose.Rot, pose.Rot);
				PoserData_poser_raw_pose_func(pd, so, lh, &txPose);
			}

			epnp_dtor(&pnp);
		}

		return 0;
	}
	case POSERDATA_FULL_SCENE: {
		return opencv_solver_fullscene(so, (PoserDataFullScene *)(pd));
	}
	}
	return -1;
}

REGISTER_LINKTIME(PoserEPNP);