aboutsummaryrefslogtreecommitdiff
path: root/src/poser_daveortho.c
blob: 4cf6dd85fe8f4f225ffc820ac4000532e3cc7a11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#include "survive_cal.h"
#include <math.h>
#include <string.h>
#include "linmath.h"
#include <survive.h>
#include <stdio.h>
#include <stdlib.h>
#include <dclapack.h>
#include <linmath.h>

static int LH_ID;

void OrthoSolve(
    FLT T[4][4],               // OUTPUT: 4x4 transformation matrix
    FLT S_out[2][SENSORS_PER_OBJECT],  // OUTPUT:  array of screenspace points
    FLT S_in[2][SENSORS_PER_OBJECT],   // INPUT:  array of screenspace points
    FLT X_in[3][SENSORS_PER_OBJECT],   // INPUT:  array of offsets
    int nPoints);


typedef struct
{
	int something;
	//Stuff
} DummyData;

int PoserDaveOrtho( SurviveObject * so, PoserData * pd )
{
	PoserType pt = pd->pt;
	SurviveContext * ctx = so->ctx;
	DummyData * dd = so->PoserData;

	if( !dd ) so->PoserData = dd = malloc( sizeof( DummyData ) );

	switch( pt )
	{
	case POSERDATA_IMU:
	{
		PoserDataIMU * imu = (PoserDataIMU*)pd;
		//printf( "IMU:%s (%f %f %f) (%f %f %f)\n", so->codename, imu->accel[0], imu->accel[1], imu->accel[2], imu->gyro[0], imu->gyro[1], imu->gyro[2] );
		break;
	}
	case POSERDATA_LIGHT:
	{
		PoserDataLight * l = (PoserDataLight*)pd;
		//printf( "LIG:%s %d @ %f rad, %f s (AC %d) (TC %d)\n", so->codename, l->sensor_id, l->angle, l->length, l->acode, l->timecode );
		break;
	}
	case POSERDATA_FULL_SCENE:
	{
		PoserDataFullScene * fs = (PoserDataFullScene*)pd;

		for( LH_ID = 0; LH_ID < 2; LH_ID++ )
		{
			int i;
			int max_hits = 0;
			FLT S_in[2][SENSORS_PER_OBJECT];
			FLT X_in[3][SENSORS_PER_OBJECT];
			for( i = 0; i < SENSORS_PER_OBJECT; i++ )
			{
				//Load all our valid points into something the LHFinder can use.
				if( fs->lengths[i][LH_ID][0] > 0 )
				{
					S_in[0][max_hits] = fs->angles[i][LH_ID][0];
					S_in[1][max_hits] = fs->angles[i][LH_ID][1];
					X_in[0][max_hits] = so->sensor_locations[i*3+0];
					X_in[1][max_hits] = so->sensor_locations[i*3+1];
					X_in[2][max_hits] = so->sensor_locations[i*3+2];
					max_hits++;
				}

			}
			FLT tOut[4][4];
			FLT S_out[2][SENSORS_PER_OBJECT];
			OrthoSolve( tOut, S_out, S_in, X_in, max_hits );

						//Now, we need to solve where we are as a function of where
			//the lighthouses are.
			FLT quat[4];
			FLT posoff[3] = { tOut[0][3], tOut[1][3], tOut[2][3] };
			FLT MT[4][4];

			//matrix44transpose( MT, &tOut[0][0] );
			matrix44copy( &MT[0][0], &tOut[0][0] );

			quatfrommatrix( quat, &MT[0][0] );


			//printf( "QUAT: %f %f %f %f = %f\n", quat[0], quat[1], quat[2], quat[3], quatmagnitude(quat) );
			//quat[2] -= 0.005; //fixes up lh0 in test data set.
			quatnormalize( quat, quat );
			printf( "QUAT: %f %f %f %f = %f [%f %f %f]\n", quat[0], quat[1], quat[2], quat[3], quatmagnitude(quat), posoff[0], posoff[1], posoff[2] );
			
			for( i = 0; i < max_hits;i++ )
			{
				FLT pt[3] = { X_in[0][i], X_in[1][i], X_in[2][i] };
				quatrotatevector( pt, quat, pt );
				add3d( pt, pt, posoff );
				printf( "OUT %f %f %f ANGLE %f %f AOUT %f %f\n", 
					pt[0], pt[1], pt[2],
					S_in[0][i], S_in[1][i], atan2( pt[0], pt[1] ), atan2( pt[2], pt[1] ) );
			}

			so->FromLHPose[LH_ID].Pos[0] = posoff[0];
			so->FromLHPose[LH_ID].Pos[1] = posoff[1];
			so->FromLHPose[LH_ID].Pos[2] = posoff[2];
			so->FromLHPose[LH_ID].Rot[0] = quat[0];
			so->FromLHPose[LH_ID].Rot[1] = quat[1];
			so->FromLHPose[LH_ID].Rot[2] = quat[2];
			so->FromLHPose[LH_ID].Rot[3] = quat[3];
		}

		break;
	}
	case POSERDATA_DISASSOCIATE:
	{
		free( dd );
		so->PoserData = 0;
		//printf( "Need to disassociate.\n" );
		break;
	}
	}
	return 0;
}


REGISTER_LINKTIME( PoserDaveOrtho );





#define PRINT_MAT(A,M,N) { \
    int m,n; \
    printf(#A "\n"); \
    for (m=0; m<M; m++) { \
        for (n=0; n<N; n++) { \
            printf("%f\t", A[m][n]); \
        } \
        printf("\n"); \
    } \
}

#define CrossProduct(ox,oy,oz,a,b,c,x,y,z) { \
    ox=(b)*(z)-(c)*(y); \
    oy=(c)*(x)-(a)*(z); \
    oz=(a)*(y)-(b)*(x); }

void OrthoSolve(
    FLT T[4][4],               // OUTPUT: 4x4 transformation matrix
    FLT S_out[2][SENSORS_PER_OBJECT],  // OUTPUT:  array of screenspace points
    FLT S_in[2][SENSORS_PER_OBJECT],   // INPUT:  array of screenspace points
    FLT X_in[3][SENSORS_PER_OBJECT],   // INPUT:  array of offsets
    int nPoints)
{
    int i,j,k;
    FLT R[3][3];           // OUTPUT: 3x3 rotation matrix
    FLT trans[3];          // INPUT:  x,y,z translation vector

    //--------------------
    // Remove the center of the HMD offsets, and the screen space
    //--------------------
    FLT xbar[3] = {0.0, 0.0, 0.0};
    FLT sbar[2] = {0.0, 0.0};
    FLT S[2][SENSORS_PER_OBJECT];
    FLT X[3][SENSORS_PER_OBJECT];
    FLT inv_nPoints = 1.0 / nPoints;
    for (i=0; i<nPoints; i++) {
        xbar[0] += X_in[0][i];
        xbar[1] += X_in[1][i];
        xbar[2] += X_in[2][i];
        sbar[0] += S_in[0][i];
        sbar[1] += S_in[1][i];        
    }
    for (j=0; j<3; j++) { xbar[j] *= inv_nPoints; }
    for (j=0; j<2; j++) { sbar[j] *= inv_nPoints; }
    for (i=0; i<nPoints; i++) {
        X[0][i] = X_in[0][i] - xbar[0];
        X[1][i] = X_in[1][i] - xbar[1];
        X[2][i] = X_in[2][i] - xbar[2];
        S[0][i] = S_in[0][i] - sbar[0];
        S[1][i] = S_in[1][i] - sbar[1];
    }
    
    //--------------------
    // Solve for the morph matrix
    //  S = M X
    // thus
    // (SX^t)(XX^t)^-1 = M
    //--------------------
    FLT Xt[SENSORS_PER_OBJECT][3];
    FLT XXt[3][3];
    FLT invXXt[3][3];
    FLT SXt[2][3];
    FLT M[2][3];           // Morph matrix! (2 by 3)
    TRANSP(Xt,X,3,nPoints);
    MUL(XXt,X,Xt,3,nPoints,3);
    MUL(SXt,S,Xt,2,nPoints,3);
    INV(invXXt,XXt,3,3);
    MUL(M,SXt,invXXt,2,3,3);
//PRINT(M,2,3);

// Double checking work
FLT S_morph[2][SENSORS_PER_OBJECT];
MUL(S_morph,M,X,2,3,nPoints);
for (i=0; i<nPoints; i++) { S_morph[0][i]+=sbar[0]; S_morph[1][i]+=sbar[1]; }

    //--------------------
    // Solve for the non-trivial vector
    //  uf -- vector that goes into the camera
    //--------------------
    FLT uM[3][3] = {
        { M[0][0], M[0][1], M[0][2] },
        { M[1][0], M[1][1], M[1][2] },
        { 3.14567, -1.2345, 4.32567 } };      // Morph matrix with appended row
//PRINT(uM,3,3);
// ToDo: Pick a number for the bottom that is NOT linearly separable with M[0] and M[1]
    FLT B[3][1] = { {0.0}, {0.0}, {1.0} };
    FLT inv_uM[3][3];
    FLT uf[3][1];
    INV(inv_uM,uM,3,3);
    MUL(uf,inv_uM,B,3,3,1);
    
    //--------------------
    // Solve for unit length vector
    //  f that goes into the camera
    //--------------------
    FLT uf_len = sqrt( uf[0][0]*uf[0][0] + uf[1][0]*uf[1][0] + uf[2][0]*uf[2][0] );
    FLT f[3][1] = { {uf[0][0]/uf_len}, {uf[1][0]/uf_len}, {uf[2][0]/uf_len} };
//PRINT(uf,3,1);
//PRINT(f,3,1);

//FLT check[3][1];
//MUL(uM,uf,check,3,3,1);
//PRINT(check,3,1);

    //--------------------
    // take cross products to get vectors u,r
    //--------------------
    FLT u[3][1], r[3][1];
    CrossProduct(u[0][0],u[1][0],u[2][0],f[0][0],f[1][0],f[2][0],1.0,0.0,0.0);
    FLT inv_ulen = 1.0 / sqrt( u[0][0]*u[0][0] + u[1][0]*u[1][0] + u[2][0]*u[2][0] );
    u[0][0]*=inv_ulen; u[1][0]*=inv_ulen; u[2][0]*=inv_ulen;
    CrossProduct(r[0][0],r[1][0],r[2][0],f[0][0],f[1][0],f[2][0],u[0][0],u[1][0],u[2][0]);
//PRINT(u,3,1);
//PRINT(r,3,1);

    //--------------------
    // Use morph matrix to get screen space
    //  uhat,rhat
    //--------------------
    FLT uhat[2][1], rhat[2][1], fhat[2][1];
    MUL(fhat,M,f,2,3,1);
    MUL(uhat,M,u,2,3,1);
    MUL(rhat,M,r,2,3,1);
    FLT fhat_len = sqrt( fhat[0][0]*fhat[0][0] + fhat[1][0]*fhat[1][0] );
    FLT uhat_len = sqrt( uhat[0][0]*uhat[0][0] + uhat[1][0]*uhat[1][0] );
    FLT rhat_len = sqrt( rhat[0][0]*rhat[0][0] + rhat[1][0]*rhat[1][0] );
    FLT urhat_len = 0.5 * (uhat_len + rhat_len);
/*    
printf("fhat %f %f (len %f)\n", fhat[0][0], fhat[1][0], fhat_len);
printf("uhat %f %f (len %f)\n", uhat[0][0], uhat[1][0], uhat_len);
printf("rhat %f %f (len %f)\n", rhat[0][0], rhat[1][0], rhat_len);
*/
//    FLT ydist1 = 1.0 /  uhat_len; //0.25*PI / uhat_len;
//    FLT ydist2 = 1.0 /  rhat_len; //0.25*PI / rhat_len;
    FLT ydist  = 1.0 / urhat_len;
    printf("ydist %f\n", ydist);
//    printf("ydist1 %f ydist2 %f ydist %f\n", ydist1, ydist2, ydist);

    //--------------------
    // Rescale the axies to be of the proper length
    //--------------------
    FLT x[3][1] = { {M[0][0]*ydist}, {0.0}, {M[1][0]*ydist} };
    FLT y[3][1] = { {M[0][1]*ydist}, {0.0}, {M[1][1]*ydist} };
    FLT z[3][1] = { {M[0][2]*ydist}, {0.0}, {M[1][2]*ydist} };
    // we know the distance into (or out of) the camera for the z axis,
    //  but we don't know which direction . . .
    FLT x_y = sqrt(1.0 - x[0][0]*x[0][0] - x[2][0]*x[2][0]);
    FLT y_y = sqrt(1.0 - y[0][0]*y[0][0] - y[2][0]*y[2][0]);
    FLT z_y = sqrt(1.0 - z[0][0]*z[0][0] - z[2][0]*z[2][0]);

	if( x_y != x_y ) x_y = 0;
	if( y_y != y_y ) y_y = 0;
	if( z_y != z_y ) z_y = 0;

    // Exhaustively flip the minus sign of the z axis until we find the right one . . .
    FLT bestErr = 9999.0;
    FLT xy_dot2 = x[0][0]*y[0][0] + x[2][0]*y[2][0];
    FLT yz_dot2 = y[0][0]*z[0][0] + y[2][0]*z[2][0];
    FLT zx_dot2 = z[0][0]*x[0][0] + z[2][0]*x[2][0];
    for (i=0;i<2;i++) {
        for (j=0;j<2;j++) {
            for(k=0;k<2;k++) {
            
                // Calculate the error term
                FLT xy_dot = xy_dot2 + x_y*y_y;
                FLT yz_dot = yz_dot2 + y_y*z_y;
                FLT zx_dot = zx_dot2 + z_y*x_y;
                FLT err = _ABS(xy_dot) + _ABS(yz_dot) + _ABS(zx_dot);
                
                // Calculate the handedness
                FLT cx,cy,cz;
                CrossProduct(cx,cy,cz,x[0][0],x_y,x[2][0],y[0][0],y_y,y[2][0]);
                FLT hand = cx*z[0][0] + cy*z_y + cz*z[2][0];
//                printf("err %f hand %f\n", err, hand);
                
                // If we are the best right-handed frame so far
                //if (hand > 0 && err < bestErr) { x[1][0]=x_y; y[1][0]=y_y; z[1][0]=z_y; bestErr=err; }
				if ( i == 0 && j == 1 && k == 0) { x[1][0]=x_y; y[1][0]=y_y; z[1][0]=z_y; bestErr=err; }
                z_y = -z_y;
            }
            y_y = -y_y;
        }
        x_y = -x_y;
    }
//    printf("bestErr %f\n", bestErr);

/*
    //-------------------------
    // A test version of the rescaling to the proper length
    //-------------------------
    FLT ydist2 = ydist;
    FLT bestBestErr = 9999.0;
    FLT bestYdist = 0;
    for (ydist2=ydist-0.1; ydist2<ydist+0.1; ydist2+=0.0001)
    {
        FLT x2[3][1] = { {M[0][0]*ydist2}, {0.0}, {M[1][0]*ydist2} };
        FLT y2[3][1] = { {M[0][1]*ydist2}, {0.0}, {M[1][1]*ydist2} };
        FLT z2[3][1] = { {M[0][2]*ydist2}, {0.0}, {M[1][2]*ydist2} };

        // we know the distance into (or out of) the camera for the z axis,
        //  but we don't know which direction . . .
        FLT x_y = sqrt(1.0 - x2[0][0]*x2[0][0] - x2[2][0]*x2[2][0]);
        FLT y_y = sqrt(1.0 - y2[0][0]*y2[0][0] - y2[2][0]*y2[2][0]);
        FLT z_y = sqrt(1.0 - z2[0][0]*z2[0][0] - z2[2][0]*z2[2][0]);

		if( x_y != x_y ) x_y = 0;
		if( y_y != y_y ) y_y = 0;
		if( z_y != z_y ) z_y = 0;

//		printf( "---> %f %f %f\n", x_y, y_y, z_y );

        // Exhaustively flip the minus sign of the z axis until we find the right one . . .
        FLT bestErr = 9999.0;
        FLT xy_dot2 = x2[0][0]*y2[0][0] + x2[2][0]*y2[2][0];
        FLT yz_dot2 = y2[0][0]*z2[0][0] + y2[2][0]*z2[2][0];
        FLT zx_dot2 = z2[0][0]*x2[0][0] + z2[2][0]*x2[2][0];
        for (i=0;i<2;i++) {
            for (j=0;j<2;j++) {
                for(k=0;k<2;k++) {
            
                    // Calculate the error term
                    FLT xy_dot = xy_dot2 + x_y*y_y;
                    FLT yz_dot = yz_dot2 + y_y*z_y;
                    FLT zx_dot = zx_dot2 + z_y*x_y;
                    FLT err = _ABS(xy_dot) + _ABS(yz_dot) + _ABS(zx_dot);
                
                    // Calculate the handedness
                    FLT cx,cy,cz;
                    CrossProduct(cx,cy,cz,x2[0][0],x_y,x2[2][0],y2[0][0],y_y,y2[2][0]);
                    FLT hand = cx*z2[0][0] + cy*z_y + cz*z2[2][0];
                  //printf("err %f hand %f\n", err, hand);
                
                    // If we are the best right-handed frame so far
                    if (hand > 0 && err < bestErr) { x2[1][0]=x_y; y2[1][0]=y_y; z2[1][0]=z_y; bestErr=err; }
                    z_y = -z_y;
                }
                y_y = -y_y;
            }
            x_y = -x_y;
        }
        printf("ydist2 %f bestErr %f\n",ydist2,bestErr);
        
        if (bestErr < bestBestErr) {
            memcpy(x,x2,3*sizeof(FLT));
            memcpy(y,y2,3*sizeof(FLT));
            memcpy(z,z2,3*sizeof(FLT));
            bestBestErr = bestErr;
            bestYdist = ydist2;
        }
    }
    ydist = bestYdist;
*/
/*
    for (i=0; i<nPoints; i++) {
        FLT x1 = x[0][0]*X[0][i] + y[0][0]*X[1][i] + z[0][0]*X[2][i];
        FLT y1 = x[1][0]*X[0][i] + y[1][0]*X[1][i] + z[1][0]*X[2][i];
        FLT z1 = x[2][0]*X[0][i] + y[2][0]*X[1][i] + z[2][0]*X[2][i];
        printf("x1z1 %f %f y1 %f\n", x1, z1, y1);
    }
*/
/*    
    //--------------------
    // Combine uhat and rhat to figure out the unit x-vector
    //--------------------
    FLT xhat[2][1]  = { {0.0}, {1.0} };
    FLT urhat[2][2] = {
        {uhat[0][0], uhat[1][0]},
        {rhat[0][0], rhat[1][0]} };
    FLT inv_urhat[2][2];
    FLT ab[2][1];
    INV(urhat,inv_urhat,2);
    MUL(inv_urhat,xhat,ab,2,2,1);
PRINT(ab,2,1);
    FLT a = ab[0][0], b = ab[1][0];

    //-------------------
    // calculate the xyz coordinate system
    //-------------------
    FLT y[3][1] = { {f[0][0]}, {f[1][0]}, {f[2][0]} };
    FLT x[3][1] = { {a*u[0][0] + b*r[0][0]}, {a*u[1][0] + b*r[1][0]}, {a*u[2][0] + b*r[2][0]} };
    FLT inv_xlen = 1.0 / sqrt( x[0][0]*x[0][0] + x[1][0]*x[1][0] + x[2][0]*x[2][0] );
    x[0][0]*=inv_xlen; x[1][0]*=inv_xlen; x[2][0]*=inv_xlen;
    FLT z[3][1];
    CrossProduct(z[0][0],z[1][0],z[2][0],x[0][0],x[1][0],x[2][0],y[0][0],y[1][0],y[2][0]);
*/
    // Store into the rotation matrix
    for (i=0; i<3; i++) { R[i][0] = x[i][0]; R[i][1] = y[i][0]; R[i][2] = z[i][0]; }
//PRINT(R,3,3);

    //-------------------
    // Calculate the translation of the centroid
    //-------------------
    trans[0]=tan(sbar[0]);  trans[1]=1.0;  trans[2]=tan(sbar[1]);
    FLT inv_translen = ydist / sqrt( trans[0]*trans[0] + trans[1]*trans[1] + trans[2]*trans[2] );
    trans[0]*=inv_translen; trans[1]*=inv_translen; trans[2]*=inv_translen;

    //-------------------
    // Add in the centroid point
    //-------------------
    trans[0] -= xbar[0]*R[0][0] + xbar[1]*R[0][1] + xbar[2]*R[0][2];
    trans[1] -= xbar[0]*R[1][0] + xbar[1]*R[1][1] + xbar[2]*R[1][2];
    trans[2] -= xbar[0]*R[2][0] + xbar[1]*R[2][1] + xbar[2]*R[2][2];
    FLT transdist = sqrt( trans[0]*trans[0] + trans[1]*trans[1] + trans[2]*trans[2] );

    //-------------------
    // Pack into the 4x4 transformation matrix
    //-------------------
    T[0][0]=R[0][0]; T[0][1]=R[0][1]; T[0][2]=R[0][2]; T[0][3]=trans[0];
    T[1][0]=R[1][0]; T[1][1]=R[1][1]; T[1][2]=R[1][2]; T[1][3]=trans[1];
    T[2][0]=R[2][0]; T[2][1]=R[2][1]; T[2][2]=R[2][2]; T[2][3]=trans[2];
    T[3][0]=0.0;     T[3][1]=0.0;     T[3][2]=0.0;     T[3][3]=1.0;


	FLT T2[4][4];

	//-------------------
	// Orthogonalize the matrix
	//-------------------
	FLT temp[4][4];
	FLT quat[4], quatNorm[4];
	FLT euler[3];


	//-------------------
	// Orthogonalize the matrix
	//-------------------
	PRINT_MAT(T,4,4);

#if 1
//	matrix44transpose(T2, T);  //Transpose so we are
	matrix44copy((FLT*)T2,(FLT*)T);
	cross3d( &T2[1][0], &T2[0][0], &T2[2][0] );
	cross3d( &T2[2][0], &T2[1][0], &T2[0][0] ); //Replace axes in-place.
	matrix44copy((FLT*)T,(FLT*)T2);
//	matrix44transpose(T, T2);

#endif

	normalize3d( &T[0][0], &T[0][0] );
	normalize3d( &T[1][0], &T[1][0] );
	normalize3d( &T[2][0], &T[2][0] );
	//Change handedness

	T[1][0]*=-1;
	T[1][1]*=-1;
	T[1][2]*=-1;

/*
	//Check Orthogonality.  Yep. It's orthogonal.
	FLT tmp[3];
	cross3d( tmp, &T[0][0], &T[1][0] );
	printf( "M3: %f\n", magnitude3d( tmp ) );
	cross3d( tmp, &T[2][0], &T[1][0] );
	printf( "M3: %f\n", magnitude3d( tmp ) );
	cross3d( tmp, &T[2][0], &T[0][0] );
	printf( "M3: %f\n", magnitude3d( tmp ) );
*/

//	PRINT_MAT(T,4,4);

#if 1

	//matrix44copy(T2,T);
	matrix44transpose((FLT*)T2,(FLT*)T);

	quatfrommatrix( quat, &T2[0][0] );
	printf( "QM: %f\n", quatmagnitude( quat ) );
	quatnormalize(quatNorm,quat);
	quattoeuler(euler,quatNorm);
	quattomatrix( &T2[0][0], quatNorm );

	PRINT_MAT(T2,4,4);
	printf("rot %f %f %f len %f\n", euler[0], euler[1], euler[2], quatmagnitude(quat));
//	PRINT(T,4,4);

//	matrix44copy(temp,T2);
	matrix44transpose((FLT*)temp,(FLT*)T2);


//	matrix44transpose(T2, temp);
//	memcpy(T2,temp,16*sizeof(float));
	for (i=0; i<3; i++) {
		for (j=0; j<3; j++) {
			T[i][j] = temp[i][j];
		}
	}

/*	PRINT(T2,4,4); */
#endif

	T[1][0]*=-1;
	T[1][1]*=-1;
	T[1][2]*=-1;


/*
    CrossProduct(T[0][2],T[1][2],T[2][2],  T[0][0],T[1][0],T[2][0],  T[0][1],T[1][1],T[2][1]);
    CrossProduct(T[0][0],T[1][0],T[2][0],  T[0][1],T[1][1],T[2][1],  T[0][2],T[1][2],T[2][2]);
    CrossProduct(T[0][1],T[1][1],T[2][1],  T[0][2],T[1][2],T[2][2],  T[0][0],T[1][0],T[2][0]);
	float xlen = sqrt(T[0][0]*T[0][0] + T[1][0]*T[1][0] + T[2][0]*T[2][0]);
	float ylen = sqrt(T[0][1]*T[0][1] + T[1][1]*T[1][1] + T[2][1]*T[2][1]);
	float zlen = sqrt(T[0][2]*T[0][2] + T[1][0]*T[1][2] + T[2][2]*T[2][2]);
	T[0][0]/=xlen; T[1][0]/=xlen; T[2][0]/=xlen;
	T[0][1]/=ylen; T[1][1]/=ylen; T[2][1]/=ylen;
	T[0][2]/=zlen; T[1][2]/=zlen; T[2][2]/=zlen;
*/


 //   PRINT_MAT(T,4,4);
    //-------------------
    // Plot the output points
    //-------------------
    for (i=0; i<nPoints; i++) {
        FLT Tx = T[0][0]*X_in[0][i] + T[0][1]*X_in[1][i] + T[0][2]*X_in[2][i] + T[0][3];
        FLT Ty = T[1][0]*X_in[0][i] + T[1][1]*X_in[1][i] + T[1][2]*X_in[2][i] + T[1][3];
        FLT Tz = T[2][0]*X_in[0][i] + T[2][1]*X_in[1][i] + T[2][2]*X_in[2][i] + T[2][3];
        S_out[0][i] = atan2(Tx, Ty);   // horiz
        S_out[1][i] = atan2(Tz, Ty);   // vert
        //S_out[0][i] = Tx;
        //S_out[1][i] = Tz;
//        printf("point %i Txyz %f %f %f in %f %f out %f %f morph %f %f\n", i, Tx,Ty,Tz, S_in[0][i], S_in[1][i], S_out[0][i], S_out[1][i], S_morph[0][i], S_morph[1][i]);
    }

}