1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
#include "survive_cal.h"
#include <math.h>
#include <string.h>
#include "linmath.h"
#include <survive.h>
#include <stdio.h>
#include <stdlib.h>
#include <dclapack.h>
#include <linmath.h>
typedef struct
{
int something;
//Stuff
} DummyData;
static FLT RunOpti( SurviveObject * so, PoserDataFullScene * fs, int lh, int print, FLT * LighthousePos, FLT * LighthouseQuat );
int PoserCharlesSlow( SurviveObject * so, PoserData * pd )
{
PoserType pt = pd->pt;
SurviveContext * ctx = so->ctx;
DummyData * dd = so->PoserData;
if( !dd ) so->PoserData = dd = malloc( sizeof( DummyData ) );
switch( pt )
{
case POSERDATA_IMU:
{
PoserDataIMU * imu = (PoserDataIMU*)pd;
//printf( "IMU:%s (%f %f %f) (%f %f %f)\n", so->codename, imu->accel[0], imu->accel[1], imu->accel[2], imu->gyro[0], imu->gyro[1], imu->gyro[2] );
break;
}
case POSERDATA_LIGHT:
{
PoserDataLight * l = (PoserDataLight*)pd;
//printf( "LIG:%s %d @ %f rad, %f s (AC %d) (TC %d)\n", so->codename, l->sensor_id, l->angle, l->length, l->acode, l->timecode );
break;
}
case POSERDATA_FULL_SCENE:
{
PoserDataFullScene * fs = (PoserDataFullScene*)pd;
int p;
FLT * hmd_points = so->sensor_locations;
for( p = 0; p < so->nr_locations; p++ )
{
printf( "%f %f %f\n", hmd_points[p*3+0], hmd_points[p*3+1], hmd_points[p*3+2] );
}
int lh, cycle;
FLT dz, dy, dx;
for( lh = 0; lh < 2; lh++ )
{
FLT beste = 1e20;
FLT LighthousePos[3];
FLT LighthouseQuat[4];
LighthousePos[0] = 0;
LighthousePos[1] = 0;
LighthousePos[2] = 0;
LighthouseQuat[0] = 1;
LighthouseQuat[1] = 0;
LighthouseQuat[2] = 0;
LighthouseQuat[3] = 0;
FLT bestxyz[3];
memcpy( bestxyz, LighthousePos, sizeof( LighthousePos ) );
//STAGE1 1: Detemine vectoral position from lighthouse to target. Does not determine lighthouse-target distance.
//This also is constantly optimizing the lighthouse quaternion for optimal spotting.
FLT fullrange = 5; //Maximum search space for positions. (Relative to HMD)
//Sweep whole area 30 times
for( cycle = 0; cycle < 30; cycle ++ )
{
//Adjust position, one axis at a time, over and over until we zero in.
{
FLT bestxyzrunning[3];
beste = 1e20;
FILE * f;
if( cycle == 0 )
{
char filename[1024];
sprintf( filename, "calinfo/%d_lighthouse.dat", lh );
f = fopen( filename, "wb" );
}
//We split the space into this many groups (times 2) and
//if we're on the first cycle, we want to do a very linear
//search. As we refine our search we can then use a more
//binary search technique.
FLT splits = 4;
if( cycle == 0 ) splits = 32;
if( cycle == 1 ) splits = 13;
if( cycle == 2 ) splits = 10;
if( cycle == 3 ) splits = 8;
if( cycle == 4 ) splits = 5;
//Wwe search throug the whole space.
for( dz = -fullrange; dz < fullrange; dz += fullrange/splits )
for( dy = -fullrange; dy < fullrange; dy += fullrange/splits )
for( dx = -fullrange; dx < fullrange; dx += fullrange/splits )
{
//Specificially adjust one axis at a time, searching for the best.
memcpy( LighthousePos, bestxyz, sizeof( LighthousePos ) );
LighthousePos[0] += dx; //These are adjustments to the "best" from last frame.
LighthousePos[1] += dy;
LighthousePos[2] += dz;
FLT ft;
//Try refining the search for the best orientation several times.
ft = RunOpti(so, fs, lh, 0, LighthousePos, LighthouseQuat);
if( cycle == 0 )
{
FLT sk = ft*10.;
if( sk > 1 ) sk = 1;
uint8_t cell = (uint8_t)((1.0 - sk) * 255);
FLT epsilon = 0.1;
if( dz == 0 ) { /* Why is dz special? ? */
if ( dx > -epsilon && dx < epsilon )
cell = 255;
if ( dy > -epsilon && dy < epsilon )
cell = 128;
}
fprintf( f, "%c", cell );
}
if( ft < beste ) { beste = ft; memcpy( bestxyzrunning, LighthousePos, sizeof( LighthousePos ) ); }
}
if( cycle == 0 )
{
fclose( f );
}
memcpy( bestxyz, bestxyzrunning, sizeof( bestxyz ) );
//Print out the quality of the lock this time.
FLT dist = sqrt(bestxyz[0]*bestxyz[0] + bestxyz[1]*bestxyz[1] + bestxyz[2]*bestxyz[2]);
printf( "%f %f %f (%f) = %f\n", bestxyz[0], bestxyz[1], bestxyz[2], dist, beste );
}
//Every cycle, tighten up the search area.
fullrange *= 0.25;
}
if( beste > 0.1 )
{
//Error too high
SV_ERROR( "LH: %d / Best E %f Error too high\n", lh, beste );
return -1;
}
RunOpti(so, fs, lh, 1, LighthousePos, LighthouseQuat);
ctx->bsd[lh].PositionSet = 1;
copy3d( ctx->bsd[lh].Pose.Pos, LighthousePos );
quatcopy( ctx->bsd[lh].Pose.Rot, LighthouseQuat );
#define ALT_COORDS
#ifdef ALT_COORDS
so->FromLHPose[lh].Pos[0] = LighthousePos[0];
so->FromLHPose[lh].Pos[1] = LighthousePos[1];
so->FromLHPose[lh].Pos[2] = LighthousePos[2];
so->FromLHPose[lh].Rot[0] =-LighthouseQuat[0];
so->FromLHPose[lh].Rot[1] = LighthouseQuat[1];
so->FromLHPose[lh].Rot[2] = LighthouseQuat[2];
so->FromLHPose[lh].Rot[3] = LighthouseQuat[3];
quatrotatevector( so->FromLHPose[lh].Pos, so->FromLHPose[lh].Rot, so->FromLHPose[lh].Pos );
#else
so->FromLHPose[lh].Pos[0] = LighthousePos[0];
so->FromLHPose[lh].Pos[1] = LighthousePos[1];
so->FromLHPose[lh].Pos[2] = LighthousePos[2];
so->FromLHPose[lh].Rot[0] = LighthouseQuat[0];
so->FromLHPose[lh].Rot[1] = LighthouseQuat[1];
so->FromLHPose[lh].Rot[2] = LighthouseQuat[2];
so->FromLHPose[lh].Rot[3] = LighthouseQuat[3];
#endif
}
return 0;
}
case POSERDATA_DISASSOCIATE:
{
free( dd );
so->PoserData = 0;
//printf( "Need to disassociate.\n" );
break;
}
}
return -1;
}
REGISTER_LINKTIME( PoserCharlesSlow );
static FLT RunOpti( SurviveObject * hmd, PoserDataFullScene * fs, int lh, int print, FLT * LighthousePos, FLT * LighthouseQuat )
{
int i, p;
FLT UsToTarget[3];
FLT LastUsToTarget[3];
FLT mux = .9;
quatsetnone( LighthouseQuat );
FLT * hmd_points = hmd->sensor_locations;
FLT * hmd_normals = hmd->sensor_normals;
int dpts = hmd->nr_locations;
int first = 1, second = 0;
//First check to see if this is a valid viewpoint.
//If a sensor is pointed away from where we are testing a possible lighthouse position.
//BUT We get data from that light house, then we KNOW this is not a possible
//lighthouse position.
for( p = 0; p < dpts; p++ )
{
int dataindex = p*(2*NUM_LIGHTHOUSES)+lh*2;
if( fs->lengths[p][lh][0] < 0 || fs->lengths[p][lh][1] < 0 ) continue;
FLT me_to_dot[3];
sub3d( me_to_dot, LighthousePos, &hmd_points[p*3] );
FLT dot = dot3d( &hmd_normals[p*3], me_to_dot );
if( dot < -.01 ) { return 1000; }
}
int iters = 6;
//Iterate over a refinement of the quaternion that constitutes the
//lighthouse.
for( i = 0; i < iters; i++ )
{
first = 1;
for( p = 0; p < dpts; p++ )
{
int dataindex = p*(2*NUM_LIGHTHOUSES)+lh*2;
if( fs->lengths[p][lh][0] < 0 || fs->lengths[p][lh][1] < 0 ) continue;
//Find out where our ray shoots forth from.
FLT ax = fs->angles[p][lh][0];
FLT ay = fs->angles[p][lh][1];
//NOTE: Inputs may never be output with cross product.
//Create a fictitious normalized ray. Imagine the lighthouse is pointed
//straight in the +z direction, this is the lighthouse ray to the point.
FLT RayShootOut[3] = { sin(ax), sin(ay), 0 };
RayShootOut[2] = sqrt( 1 - (RayShootOut[0]*RayShootOut[0] + RayShootOut[1]*RayShootOut[1]) );
FLT RayShootOutWorld[3];
quatnormalize( LighthouseQuat, LighthouseQuat );
//Rotate that ray by the current rotation estimation.
quatrotatevector( RayShootOutWorld, LighthouseQuat, RayShootOut );
//Find a ray from us to the target point.
sub3d( UsToTarget, &hmd_points[p*3], LighthousePos );
if( magnitude3d( UsToTarget ) < 0.0001 ) { continue; }
normalize3d( UsToTarget, UsToTarget );
FLT RotatedLastUs[3];
quatnormalize( LighthouseQuat, LighthouseQuat );
quatrotatevector( RotatedLastUs, LighthouseQuat, LastUsToTarget );
//Rotate the lighthouse around this axis to point at the HMD.
//If it's the first time, the axis is synthesized, if it's after that, use most recent point.
FLT ConcatQuat[4];
FLT AxisToRotate[3];
if( first )
{
cross3d( AxisToRotate, RayShootOutWorld, UsToTarget );
if( magnitude3d(AxisToRotate) < 0.0001 ) break;
normalize3d( AxisToRotate, AxisToRotate );
//Don't need to worry about being negative, cross product will fix it.
FLT RotateAmount = anglebetween3d( RayShootOutWorld, UsToTarget );
quatfromaxisangle( ConcatQuat, AxisToRotate, RotateAmount );
quatnormalize( ConcatQuat, ConcatQuat );
}
else
{
FLT Target[3];
FLT Actual[3];
copy3d( AxisToRotate, LastUsToTarget );
//Us to target = normalized ray from us to where we should be.
//RayShootOut = where we would be pointing.
sub3d( Target, UsToTarget, AxisToRotate ); //XXX XXX XXX WARNING THIS MESSES STUFF UP.
sub3d( Actual, RayShootOutWorld, AxisToRotate );
if( magnitude3d( Actual ) < 0.0001 || magnitude3d( Target ) < 0.0001 ) { continue; }
normalize3d( Target, Target );
normalize3d( Actual, Actual );
cross3d( AxisToRotate, Actual, Target ); //XXX Check: AxisToRotate should be equal to LastUsToTarget.
if( magnitude3d( AxisToRotate ) < 0.000001 ) { continue; }
normalize3d( AxisToRotate,AxisToRotate );
//printf( "%f %f %f === %f %f %f : ", PFTHREE( AxisToRotate ), PFTHREE( LastUsToTarget ) );
FLT RotateAmount = anglebetween3d( Actual, Target ) * mux;
//printf( "FA: %f (O:%f)\n", acos( dot3d( Actual, Target ) ), RotateAmount );
quatfromaxisangle( ConcatQuat, AxisToRotate, RotateAmount );
quatnormalize( ConcatQuat, ConcatQuat );
}
quatnormalize( ConcatQuat, ConcatQuat );
quatnormalize( LighthouseQuat, LighthouseQuat );
quatrotateabout( LighthouseQuat, ConcatQuat, LighthouseQuat ); //Checked. This appears to be
mux = mux * 0.94;
if( second ) { second = 0; }
if( first ) { first = 0; second = 1; }
copy3d( LastUsToTarget, RayShootOutWorld );
}
}
//Step 2: Determine error.
FLT errorsq = 0.0;
int count = 0;
for( p = 0; p < dpts; p++ )
{
int dataindex = p*(2*NUM_LIGHTHOUSES)+lh*2;
if( fs->lengths[p][lh][0] < 0 || fs->lengths[p][lh][1] < 0 ) continue;
//Find out where our ray shoots forth from.
FLT ax = fs->angles[p][lh][0];
FLT ay = fs->angles[p][lh][1];
FLT RayShootOut[3] = { sin(ax), sin(ay), 0 };
RayShootOut[2] = sqrt( 1 - (RayShootOut[0]*RayShootOut[0] + RayShootOut[1]*RayShootOut[1]) );
//Rotate that ray by the current rotation estimation.
quatrotatevector( RayShootOut, LighthouseQuat, RayShootOut );
//Point-line distance.
//Line defined by LighthousePos & Direction: RayShootOut
//Find a ray from us to the target point.
sub3d( UsToTarget, &hmd_points[p*3], LighthousePos );
FLT xproduct[3];
cross3d( xproduct, UsToTarget, RayShootOut );
FLT dist = magnitude3d( xproduct );
errorsq += dist*dist;
//if( print ) printf( "%f (%d(%d/%d))\n", dist, p, cd->ctsweeps[dataindex+0], cd->ctsweeps[dataindex+1] );
}
if( print ) printf( " = %f\n", sqrt( errorsq ) );
return sqrt(errorsq);
}
|