1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
#ifndef _DCL_HELPERS_H
#define _DCL_HELPERS_H
#define DCL_FLOAT FLT
// Use this macro to safely
#define DMS(m) ((m)[0]), (sizeof((m)[0]) / sizeof((m)[0][0]))
/* Prints matrix A of size[n][m] */
void dclPrint(const DCL_FLOAT *A, int Ac, int n, int m);
/* Returns the identity matrix */
void dclIdentity(DCL_FLOAT *I, int Ic, int m, int n);
/* Returns the zero matrix */
void dclZero(DCL_FLOAT *I, int Ic, int m, int n);
/* R = Transpose(A)
A is (n by m)
R is (m by n) */
void dclTransp(DCL_FLOAT *R, int Rc, const DCL_FLOAT *A, int Ac, int n, int m);
/* Calculate L,U of a matrix A with pivot table; the pivot table is output. */
void dclLU(DCL_FLOAT *L, int Lc, DCL_FLOAT *U, int Uc, const DCL_FLOAT *A, int Ac, int *Piv, int n);
/* Pivots a matrix to a different matrix
R = Pivot(A) given table 'Piv'
A and R are (n by m) */
void dclPivot(DCL_FLOAT *R, int Rc, const DCL_FLOAT *A, int Ac, int *Piv, int n, int m);
/* Solve LX=B for matrix X and B
L is n by n (lower triangular)
B is n by m */
void dclLSub(DCL_FLOAT *X, int Xc, const DCL_FLOAT *L, int Lc, const DCL_FLOAT *B, int Bc, int n, int m);
/* Solve UX=B for matrix X and B
U is n by n (upper triangular)
B is n by m */
void dclUSub(DCL_FLOAT *X, int Xc, const DCL_FLOAT *U, int Uc, const DCL_FLOAT *B, int Bc, int n, int m);
/* Inverts a matrix X (n by n) using the method of LU decomposition */
void dclInv(DCL_FLOAT *Ainv, int Ainvc, const DCL_FLOAT *A, int Ac, int n);
/* Matrix Multiply R = A * B
A (n by m)
B (m by p)
R (n by p) */
void dclMul(DCL_FLOAT *R, int Rc, const DCL_FLOAT *A, int Ac, const DCL_FLOAT *B, int Bc, int n, int m, int p);
/* Matrix Multiply R = A * B + C
A (n by m)
B (m by p)
C (n by p)
R (n by p) */
void dclMulAdd(DCL_FLOAT *R, int Rc, const DCL_FLOAT *A, int Ac, const DCL_FLOAT *B, int Bc, const DCL_FLOAT *C, int Cc,
int n, int m, int p);
/* Matrix Multiply R = alpha * A * B + beta * C
A (n by m)
B (m by p)
C (n by p)
R (n by p) */
void dclGMulAdd(DCL_FLOAT *R, int Rc, const DCL_FLOAT *A, int Ac, const DCL_FLOAT *B, int Bc, const DCL_FLOAT *C,
int Cc, DCL_FLOAT alpha, DCL_FLOAT beta, int n, int m, int p);
/********************************
* Auxiliary functionality in C *
********************************/
// Matches dgemm from lapack.
void dcldgemm(char transA, char transB, int m, int n, int k, DCL_FLOAT alpha, const DCL_FLOAT *A, int Ac,
const DCL_FLOAT *B, int Bc, DCL_FLOAT beta, DCL_FLOAT *C, int Cc);
#endif
|