1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
#ifndef __DCLAPACK_H__
#define __DCLAPACK_H__
#ifndef FLOAT
#define FLOAT float
#endif
#include<stdio.h>
#define _ABS(a) ( (a)<=0 ? 0-(a) : (a) )
// Tricky: If you want to use this with pointers, instead of 2D arrays, you will
// need to #define DYNAMIC_INDEX, as well as, for all arrays, suffix their name
// with 'c'
#ifdef DYNAMIC_INDEX
#define _(AM, O, P) AM[O * AM##c + P]
#else
#define _(AM, O, P) AM[O][P]
#endif
/*
* Prints a matrix A (m by n) (with witdth Ac)
*/
#define PRINT(A, m, n) \
{ \
printf(#A " %dx%d\n", m, n); \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < (n); _j++) { \
printf("%4.3f ", _(A, _i, _j)); \
} \
printf("\n"); \
} \
printf("\n"); \
}
/*
* Returns the identity matrix (with size n x n, but width Ic)
*/
#define IDENTITY(I, m, n) \
{ \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < _i; _j++) { \
_(I, _i, _j) = 0.0f; \
} \
_(I, _i, _i) = 1.0f; \
for (int _j = _i + 1; _j < (n); _j++) { \
_(I, _i, _j) = 0.0f; \
} \
} \
}
/*
* Returns the identity matrix (with size n x n, but width Ic)
*/
#define ZERO(Z, m, n) \
{ \
for (int _i = 0; _i < (m); _i++) \
for (int _j = 0; _j < (n); _j++) \
_(Z, _i, _j) = 0.0f; \
}
/*
* R = Transpose(A)
* A is (m by n)
* R is (n by m)
*/
#define TRANSP(R, A, m, n) \
{ \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < (n); _j++) { \
_(R, _j, _i) = _(A, _i, _j); \
} \
} \
}
/*
* Calculate L,U of a matrix A with pivot table
*/
#define LU(L, U, A, Piv, n) \
{ \
int _i, _j, _k, _tempi; \
float _tempf; \
for (_i = 0; _i < (n); _i++) { \
Piv[_i] = _i; \
} \
for (_i = 0; _i < (n); _i++) { \
for (_j = 0; _j < (n); _j++) { \
_(U, _i, _j) = _(A, _i, _j); \
} \
} \
IDENTITY(L, n, n); \
\
for (_i = 0; _i < (n)-1; _i++) { \
\
int max = _i; \
for (_j = _i + 1; _j < (n); _j++) { \
if (_ABS(_(U, _j, _i)) > _ABS(_(U, max, _i))) { \
max = _j; \
} \
} \
_tempi = Piv[_i]; \
Piv[_i] = Piv[max]; \
Piv[max] = _tempi; \
for (_k = _i; _k < (n); _k++) { \
_tempf = _(U, _i, _k); \
_(U, _i, _k) = _(U, max, _k); \
_(U, max, _k) = _tempf; \
} \
for (_k = 0; _k < _i; _k++) { \
_tempf = _(L, _i, _k); \
_(L, _i, _k) = _(L, max, _k); \
_(L, max, _k) = _tempf; \
} \
\
FLOAT invDiag = 1.0 / _(U, _i, _i); \
for (_j = _i + 1; _j < (n); _j++) { \
FLOAT scale = _(U, _j, _i) * invDiag; \
_(U, _j, _i) = 0.0; \
for (_k = _i + 1; _k < (n); _k++) { \
_(U, _j, _k) -= _(U, _i, _k) * scale; \
} \
_(L, _j, _i) = scale; \
} \
} \
}
/*
* Pivots a matrix to a different matrix
* R = Pivot(A) given table 'Piv'
* A and R are (m by n)
*/
#define PIVOT(R, A, Piv, m, n) \
{ \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < (n); _j++) { \
_(R, _i, _j) = _(A, Piv[_i], _j); \
} \
} \
}
/*
* Solve LX=B for matrix X and B
* L is m by m (lower triangular)
* B is m by n
*/
#define L_SUB(X, L, B, m, n) \
{ \
for (int _i = 0; _i < (n); _i++) { \
for (int _j = 0; _j < (m); _j++) { \
float sum = 0.0; \
for (int _k = 0; _k < _j; _k++) { \
sum += _(L, _j, _k) * _(X, _k, _i); \
} \
_(X, _j, _i) = (_(B, _j, _i) - sum) / _(L, _j, _j); \
} \
} \
}
/*
* Solve UX=B for matrix X and B
* U is m by m (upper triangular)
* B is m by n
*/
#define U_SUB(X, U, B, m, n) \
{ \
for (int _i = 0; _i < (n); _i++) { \
for (int _j = m - 1; _j >= 0; _j--) { \
float sum = 0.0; \
for (int _k = n - 1; _k > _j; _k--) { \
sum += _(U, _j, _k) * _(X, _k, _i); \
} \
_(X, _j, _i) = (_(B, _j, _i) - sum) / _(U, _j, _j); \
} \
} \
}
/*
* Inverts a matrix X (n by n) using the method of LU decomposition
*/
#ifdef DYNAMIC_INDEX
#define INV_SETUP(ORDER) \
FLOAT Ipiv[ORDER * ORDER]; \
const int Ipivc = ORDER; \
FLOAT L[ORDER * ORDER]; \
const int Lc = ORDER; \
FLOAT U[ORDER * ORDER]; \
const int Uc = ORDER; \
FLOAT I[ORDER * ORDER]; \
const int Ic = ORDER; \
FLOAT C[ORDER * ORDER]; \
const int Cc = ORDER;
#else
#define INV_SETUP(ORDER) \
FLOAT Ipiv[ORDER][ORDER]; \
FLOAT L[ORDER][ORDER]; \
FLOAT U[ORDER][ORDER]; \
FLOAT I[ORDER][ORDER]; \
FLOAT C[ORDER][ORDER];
#endif
#define INV(Ainv, A, n, ORDER) \
{ \
INV_SETUP(ORDER) \
int Piv[ORDER]; \
IDENTITY(I, n, n); \
LU(L, U, A, Piv, n); \
PIVOT(Ipiv, I, Piv, n, n); \
L_SUB(C, L, Ipiv, n, n); \
U_SUB(Ainv, U, C, n, n); \
}
/*
PRINT(A,n,n); \
PRINT(L,n,n); \
PRINT(U,n,n); \
MUL(L,U,LU,n,n,n);\
PRINT(LU,n,n);\
PRINT(C,n,n); \
PRINT(Ainv,n,n); \
*/
/*
* Matrix Multiply R = A * B
* R (n by p)
* A (m by n)
* B (m by p)
*/
#define MUL(R, A, B, m, n, p) \
{ \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < p; _j++) { \
_(R, _i, _j) = 0.0f; \
for (int _k = 0; _k < (n); _k++) { \
_(R, _i, _j) += _(A, _i, _k) * _(B, _k, _j); \
} \
} \
} \
}
/*
* Matrix Multiply R = A * B + C
* R (m by p)
* A (m by n)
* B (n by p)
* C (m by p)
*/
#define MULADD(R, A, B, C, m, n, p) \
{ \
for (int _i = 0; _i < (m); _i++) { \
for (int _j = 0; _j < p; _j++) { \
_(R, _i, _j) = _(C, _i, _j); \
for (int _k = 0; _k < (n); _k++) { \
_(R, _i, _j) += _(A, _i, _k) * _(B, _k, _j); \
} \
} \
} \
}
/*
* Matrix Multiply R = alpha * A * B + beta * C
* R (m by p)
* A (m by n)
* B (n by p)
* C (m by p)
*/
#define GMULADD(R, A, B, C, alpha, beta, m, n, p) \
{ \
FLOAT sum; \
for (int _i = 0; _i < m; _i++) { \
for (int _j = 0; _j < p; _j++) { \
sum = 0.0f; \
for (int _k = 0; _k < n; _k++) { \
sum += _(A, _i, _k) * _(B, _k, _j); \
} \
_(R, _i, _j) = alpha * sum + beta * _(C, _i, _j); \
} \
} \
}
#endif
|