aboutsummaryrefslogtreecommitdiff
path: root/redist
diff options
context:
space:
mode:
authorMike Turvey <mturvey6@gmail.com>2017-02-07 00:11:39 -0700
committerMike Turvey <mturvey6@gmail.com>2017-02-07 00:28:20 -0700
commita4cf0b14abb17c313243d0fb84555aec2cef61a0 (patch)
tree8064d9258b3b8c387e8e0e19518efc61caaf6eec /redist
parent7ea248577178f45033802ba5cc2867f8a66d69f8 (diff)
downloadlibsurvive-a4cf0b14abb17c313243d0fb84555aec2cef61a0.tar.gz
libsurvive-a4cf0b14abb17c313243d0fb84555aec2cef61a0.tar.bz2
Merging math libraries
Diffstat (limited to 'redist')
-rw-r--r--redist/linmath.c219
-rw-r--r--redist/linmath.h48
2 files changed, 241 insertions, 26 deletions
diff --git a/redist/linmath.c b/redist/linmath.c
index 60fbc21..ea44432 100644
--- a/redist/linmath.c
+++ b/redist/linmath.c
@@ -2,6 +2,7 @@
#include "linmath.h"
#include <math.h>
+#include <float.h>
void cross3d( FLT * out, const FLT * a, const FLT * b )
{
@@ -33,7 +34,7 @@ void scale3d( FLT * out, const FLT * a, FLT scalar )
void normalize3d( FLT * out, const FLT * in )
{
- FLT r = 1./sqrtf( in[0] * in[0] + in[1] * in[1] + in[2] * in[2] );
+ FLT r = ((FLT)1.) / FLT_SQRT(in[0] * in[0] + in[1] * in[1] + in[2] * in[2]);
out[0] = in[0] * r;
out[1] = in[1] * r;
out[2] = in[2] * r;
@@ -65,7 +66,7 @@ void copy3d( FLT * out, const FLT * in )
FLT magnitude3d( FLT * a )
{
- return sqrt( a[0]*a[0] + a[1]*a[1] + a[2]*a[2] );
+ return FLT_SQRT(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
FLT anglebetween3d( FLT * a, FLT * b )
@@ -77,7 +78,7 @@ FLT anglebetween3d( FLT * a, FLT * b )
FLT dot = dot3d( a, b );
if( dot < -0.9999999 ) return LINMATHPI;
if( dot > 0.9999999 ) return 0;
- return acos( dot );
+ return FLT_ACOS(dot);
}
/////////////////////////////////////QUATERNIONS//////////////////////////////////////////
@@ -106,12 +107,12 @@ void quatfromeuler( FLT * q, const FLT * euler )
FLT Y = euler[1]/2.0f; //pitch
FLT Z = euler[2]/2.0f; //yaw
- FLT cx = cosf(X);
- FLT sx = sinf(X);
- FLT cy = cosf(Y);
- FLT sy = sinf(Y);
- FLT cz = cosf(Z);
- FLT sz = sinf(Z);
+ FLT cx = FLT_COS(X);
+ FLT sx = FLT_SIN(X);
+ FLT cy = FLT_COS(Y);
+ FLT sy = FLT_SIN(Y);
+ FLT cz = FLT_COS(Z);
+ FLT sz = FLT_SIN(Z);
//Correct according to
//http://en.wikipedia.org/wiki/Conversion_between_MQuaternions_and_Euler_angles
@@ -125,9 +126,9 @@ void quatfromeuler( FLT * q, const FLT * euler )
void quattoeuler( FLT * euler, const FLT * q )
{
//According to http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles (Oct 26, 2009)
- euler[0] = atan2( 2 * (q[0]*q[1] + q[2]*q[3]), 1 - 2 * (q[1]*q[1] + q[2]*q[2] ) );
- euler[1] = asin( 2 * (q[0] *q[2] - q[3]*q[1] ) );
- euler[2] = atan2( 2 * (q[0]*q[3] + q[1]*q[2]), 1 - 2 * (q[2]*q[2] + q[3]*q[3] ) );
+ euler[0] = FLT_ATAN2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2]));
+ euler[1] = FLT_ASIN(2 * (q[0] * q[2] - q[3] * q[1]));
+ euler[2] = FLT_ATAN2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3]));
}
void quatfromaxisangle( FLT * q, const FLT * axis, FLT radians )
@@ -135,8 +136,8 @@ void quatfromaxisangle( FLT * q, const FLT * axis, FLT radians )
FLT v[3];
normalize3d( v, axis );
- FLT sn = sin(radians/2.0f);
- q[0] = cos(radians/2.0f);
+ FLT sn = FLT_SIN(radians / 2.0f);
+ q[0] = FLT_COS(radians / 2.0f);
q[1] = sn * v[0];
q[2] = sn * v[1];
q[3] = sn * v[2];
@@ -146,12 +147,12 @@ void quatfromaxisangle( FLT * q, const FLT * axis, FLT radians )
FLT quatmagnitude( const FLT * q )
{
- return sqrt((q[0]*q[0])+(q[1]*q[1])+(q[2]*q[2])+(q[3]*q[3]));
+ return FLT_SQRT((q[0] * q[0]) + (q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
}
FLT quatinvsqmagnitude( const FLT * q )
{
- return 1./((q[0]*q[0])+(q[1]*q[1])+(q[2]*q[2])+(q[3]*q[3]));
+ return ((FLT)1.)/((q[0]*q[0])+(q[1]*q[1])+(q[2]*q[2])+(q[3]*q[3]));
}
@@ -296,13 +297,13 @@ void quatslerp( FLT * q, const FLT * qa, const FLT * qb, FLT t )
if ( 1 - (cosTheta*cosTheta) <= 0 )
sinTheta = 0;
else
- sinTheta = sqrt(1 - (cosTheta*cosTheta));
+ sinTheta = FLT_SQRT(1 - (cosTheta*cosTheta));
- FLT Theta = acos(cosTheta); //Theta is half the angle between the 2 MQuaternions
+ FLT Theta = FLT_ACOS(cosTheta); //Theta is half the angle between the 2 MQuaternions
- if(fabs(Theta) < DEFAULT_EPSILON )
+ if (FLT_FABS(Theta) < DEFAULT_EPSILON)
quatcopy( q, qa );
- else if(fabs(sinTheta) < DEFAULT_EPSILON )
+ else if (FLT_FABS(sinTheta) < DEFAULT_EPSILON)
{
quatadd( q, qa, qb );
quatscale( q, q, 0.5 );
@@ -311,10 +312,10 @@ void quatslerp( FLT * q, const FLT * qa, const FLT * qb, FLT t )
{
FLT aside[4];
FLT bside[4];
- quatscale( bside, qb, sin( t * Theta ) );
- quatscale( aside, qa, sin((1-t)*Theta) );
+ quatscale( bside, qb, FLT_SIN(t * Theta));
+ quatscale( aside, qa, FLT_SIN((1 - t)*Theta));
quatadd( q, aside, bside );
- quatscale( q, q, 1./sinTheta );
+ quatscale( q, q, ((FLT)1.)/sinTheta );
}
}
@@ -338,4 +339,176 @@ void quatrotatevector( FLT * vec3out, const FLT * quat, const FLT * vec3in )
}
+// Matrix Stuff
+
+Matrix3x3 inverseM33(const Matrix3x3 mat)
+{
+ Matrix3x3 newMat;
+ for (int a = 0; a < 3; a++)
+ {
+ for (int b = 0; b < 3; b++)
+ {
+ newMat.val[a][b] = mat.val[a][b];
+ }
+ }
+
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = i + 1; j < 3; j++)
+ {
+ FLT tmp = newMat.val[i][j];
+ newMat.val[i][j] = newMat.val[j][i];
+ newMat.val[j][i] = tmp;
+ }
+ }
+
+ return newMat;
+}
+
+/////////////////////////////////////Matrix Rotations////////////////////////////////////
+//Originally from Stack Overflow
+//Under cc by-sa 3.0
+// http://stackoverflow.com/questions/23166898/efficient-way-to-calculate-a-3x3-rotation-matrix-from-the-rotation-defined-by-tw
+// Copyright 2014 by Campbell Barton
+// Copyright 2017 by Michael Turvey
+
+/**
+* Calculate a rotation matrix from 2 normalized vectors.
+*
+* v1 and v2 must be unit length.
+*/
+void rotation_between_vecs_to_mat3(FLT m[3][3], const FLT v1[3], const FLT v2[3])
+{
+ FLT axis[3];
+ /* avoid calculating the angle */
+ FLT angle_sin;
+ FLT angle_cos;
+
+ cross3d(axis, v1, v2);
+
+ angle_sin = normalize_v3(axis);
+ angle_cos = dot3d(v1, v2);
+
+ if (angle_sin > FLT_EPSILON) {
+ axis_calc:
+ axis_angle_normalized_to_mat3_ex(m, axis, angle_sin, angle_cos);
+ }
+ else {
+ /* Degenerate (co-linear) vectors */
+ if (angle_cos > 0.0f) {
+ /* Same vectors, zero rotation... */
+ unit_m3(m);
+ }
+ else {
+ /* Colinear but opposed vectors, 180 rotation... */
+ get_orthogonal_vector(axis, v1);
+ normalize_v3(axis);
+ angle_sin = 0.0f; /* sin(M_PI) */
+ angle_cos = -1.0f; /* cos(M_PI) */
+ goto axis_calc;
+ }
+ }
+}
+
+void get_orthogonal_vector(FLT out[3], const FLT in[3])
+{
+#ifdef USE_DOUBLE
+ const FLT x = fabs(in[0]);
+ const FLT y = fabs(in[1]);
+ const FLT z = fabs(in[2]);
+#else
+ const FLT x = fabsf(in[0]);
+ const FLT y = fabsf(in[1]);
+ const FLT z = fabsf(in[2]);
+#endif
+
+ if (x > y && x > z)
+ {
+ // x is dominant
+ out[0] = -in[1] - in[2];
+ out[1] = in[0];
+ out[2] = in[0];
+ }
+ else if (y > z)
+ {
+ // y is dominant
+ out[0] = in[1];
+ out[1] = -in[0] - in[2];
+ out[2] = in[1];
+ }
+ else
+ {
+ // z is dominant
+ out[0] = in[2];
+ out[1] = in[2];
+ out[2] = -in[0] - in[1];
+ }
+}
+
+void unit_m3(FLT mat[3][3])
+{
+ mat[0][0] = 1;
+ mat[0][1] = 0;
+ mat[0][2] = 0;
+ mat[1][0] = 0;
+ mat[1][1] = 1;
+ mat[1][2] = 0;
+ mat[2][0] = 0;
+ mat[2][1] = 0;
+ mat[2][2] = 1;
+}
+
+
+FLT normalize_v3(FLT vect[3])
+{
+ FLT distance = dot3d(vect, vect);
+
+ if (distance < 1.0e-35f)
+ {
+ // distance is too short, just go to zero.
+ vect[0] = 0;
+ vect[1] = 0;
+ vect[2] = 0;
+ distance = 0;
+ }
+ else
+ {
+ distance = FLT_SQRT((FLT)distance);
+ scale3d(vect, vect, 1.0f / distance);
+ }
+
+ return distance;
+}
+
+/* axis must be unit length */
+void axis_angle_normalized_to_mat3_ex(
+ FLT mat[3][3], const FLT axis[3],
+ const FLT angle_sin, const FLT angle_cos)
+{
+ FLT nsi[3], ico;
+ FLT n_00, n_01, n_11, n_02, n_12, n_22;
+
+ ico = (1.0f - angle_cos);
+ nsi[0] = axis[0] * angle_sin;
+ nsi[1] = axis[1] * angle_sin;
+ nsi[2] = axis[2] * angle_sin;
+
+ n_00 = (axis[0] * axis[0]) * ico;
+ n_01 = (axis[0] * axis[1]) * ico;
+ n_11 = (axis[1] * axis[1]) * ico;
+ n_02 = (axis[0] * axis[2]) * ico;
+ n_12 = (axis[1] * axis[2]) * ico;
+ n_22 = (axis[2] * axis[2]) * ico;
+
+ mat[0][0] = n_00 + angle_cos;
+ mat[0][1] = n_01 + nsi[2];
+ mat[0][2] = n_02 - nsi[1];
+ mat[1][0] = n_01 - nsi[2];
+ mat[1][1] = n_11 + angle_cos;
+ mat[1][2] = n_12 + nsi[0];
+ mat[2][0] = n_02 + nsi[1];
+ mat[2][1] = n_12 - nsi[0];
+ mat[2][2] = n_22 + angle_cos;
+}
+
diff --git a/redist/linmath.h b/redist/linmath.h
index 5cc7b7d..530d291 100644
--- a/redist/linmath.h
+++ b/redist/linmath.h
@@ -10,14 +10,37 @@
#define PFTHREE(x) x[0], x[1], x[2]
#define PFFOUR(x) x[0], x[1], x[2], x[3]
-#define LINMATHPI 3.141592653589
+#define LINMATHPI ((FLT)3.141592653589)
+
+//uncomment the following line to use double precision instead of single precision.
+//#define USE_DOUBLE
+
+#ifdef USE_DOUBLE
+
+#define FLT double
+#define FLT_SQRT sqrt
+#define FLT_SIN sin
+#define FLT_COS cos
+#define FLT_ACOS acos
+#define FLT_ASIN asin
+#define FLT_ATAN2 atan2
+#define FLT_FABS fabs
+
+#else
-//If you want, you can define FLT to be double for double precision.
-#ifndef FLT
#define FLT float
+#define FLT_SQRT sqrtf
+#define FLT_SIN sinf
+#define FLT_COS cosf
+#define FLT_ACOS acosf
+#define FLT_ASIN asinf
+#define FLT_ATAN2 atan2f
+#define FLT_FABS fabsf
+
#endif
+
//NOTE: Inputs may never be output with cross product.
void cross3d( FLT * out, const FLT * a, const FLT * b );
@@ -64,6 +87,25 @@ void quatoddproduct( FLT * outvec3, FLT * qa, FLT * qb );
void quatslerp( FLT * q, const FLT * qa, const FLT * qb, FLT t );
void quatrotatevector( FLT * vec3out, const FLT * quat, const FLT * vec3in );
+// Matrix Stuff
+
+typedef struct
+{
+ // row, column, (0,0) in upper left
+ FLT val[3][3];
+} Matrix3x3;
+
+Matrix3x3 inverseM33(const Matrix3x3 mat);
+void get_orthogonal_vector(FLT out[3], const FLT in[3]);
+void rotation_between_vecs_to_mat3(FLT m[3][3], const FLT v1[3], const FLT v2[3]);
+void unit_m3(FLT m[3][3]);
+FLT normalize_v3(FLT n[3]);
+void axis_angle_normalized_to_mat3_ex(
+ FLT mat[3][3],
+ const FLT axis[3],
+ const FLT angle_sin,
+ const FLT angle_cos);
+
#endif