aboutsummaryrefslogtreecommitdiff
path: root/redist
diff options
context:
space:
mode:
authorJustin Berger <j.david.berger@gmail.com>2018-03-25 21:22:53 -0600
committerJustin Berger <j.david.berger@gmail.com>2018-03-25 21:29:41 -0600
commit005713cf133df85f208ff0cb2117a6855b85a5a7 (patch)
treeb3b08038e2038d71ea51e25f558f9933c357a06a /redist
parent801e17d2c52c21adad5eff63265c1aaea2255b1b (diff)
downloadlibsurvive-005713cf133df85f208ff0cb2117a6855b85a5a7.tar.gz
libsurvive-005713cf133df85f208ff0cb2117a6855b85a5a7.tar.bz2
Added PoseToMatrix function for debugability
Diffstat (limited to 'redist')
-rw-r--r--redist/linmath.c339
-rw-r--r--redist/linmath.h69
2 files changed, 189 insertions, 219 deletions
diff --git a/redist/linmath.c b/redist/linmath.c
index d005074..c57410f 100644
--- a/redist/linmath.c
+++ b/redist/linmath.c
@@ -1,130 +1,120 @@
-//Copyright 2013,2016 <>< C. N. Lohr. This file licensed under the terms of the MIT license.
+// Copyright 2013,2016 <>< C. N. Lohr. This file licensed under the terms of the MIT license.
-#include <math.h>
#include "linmath.h"
#include <float.h>
+#include <math.h>
#include <string.h>
-void cross3d( FLT * out, const FLT * a, const FLT * b )
-{
- out[0] = a[1]*b[2] - a[2]*b[1];
- out[1] = a[2]*b[0] - a[0]*b[2];
- out[2] = a[0]*b[1] - a[1]*b[0];
+void cross3d(FLT *out, const FLT *a, const FLT *b) {
+ out[0] = a[1] * b[2] - a[2] * b[1];
+ out[1] = a[2] * b[0] - a[0] * b[2];
+ out[2] = a[0] * b[1] - a[1] * b[0];
}
-void sub3d( FLT * out, const FLT * a, const FLT * b )
-{
+void sub3d(FLT *out, const FLT *a, const FLT *b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
}
-void add3d( FLT * out, const FLT * a, const FLT * b )
-{
+void add3d(FLT *out, const FLT *a, const FLT *b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
}
-void scale3d( FLT * out, const FLT * a, FLT scalar )
-{
+void scale3d(FLT *out, const FLT *a, FLT scalar) {
out[0] = a[0] * scalar;
out[1] = a[1] * scalar;
out[2] = a[2] * scalar;
}
-void normalize3d( FLT * out, const FLT * in )
-{
+void normalize3d(FLT *out, const FLT *in) {
FLT r = ((FLT)1.) / FLT_SQRT(in[0] * in[0] + in[1] * in[1] + in[2] * in[2]);
out[0] = in[0] * r;
out[1] = in[1] * r;
out[2] = in[2] * r;
}
-FLT dot3d( const FLT * a, const FLT * b )
-{
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
-}
-
-int compare3d( const FLT * a, const FLT * b, FLT epsilon )
-{
- if( !a || !b ) return 0;
- if( a[2] - b[2] > epsilon ) return 1;
- if( b[2] - a[2] > epsilon ) return -1;
- if( a[1] - b[1] > epsilon ) return 1;
- if( b[1] - a[1] > epsilon ) return -1;
- if( a[0] - b[0] > epsilon ) return 1;
- if( b[0] - a[0] > epsilon ) return -1;
+FLT dot3d(const FLT *a, const FLT *b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }
+
+int compare3d(const FLT *a, const FLT *b, FLT epsilon) {
+ if (!a || !b)
+ return 0;
+ if (a[2] - b[2] > epsilon)
+ return 1;
+ if (b[2] - a[2] > epsilon)
+ return -1;
+ if (a[1] - b[1] > epsilon)
+ return 1;
+ if (b[1] - a[1] > epsilon)
+ return -1;
+ if (a[0] - b[0] > epsilon)
+ return 1;
+ if (b[0] - a[0] > epsilon)
+ return -1;
return 0;
}
-void copy3d( FLT * out, const FLT * in )
-{
+void copy3d(FLT *out, const FLT *in) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
-FLT magnitude3d(const FLT * a )
-{
- return FLT_SQRT(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
-}
+FLT magnitude3d(const FLT *a) { return FLT_SQRT(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); }
-FLT anglebetween3d( FLT * a, FLT * b )
-{
+FLT anglebetween3d(FLT *a, FLT *b) {
FLT an[3];
FLT bn[3];
- normalize3d( an, a );
- normalize3d( bn, b );
+ normalize3d(an, a);
+ normalize3d(bn, b);
FLT dot = dot3d(an, bn);
- if( dot < -0.9999999 ) return LINMATHPI;
- if( dot > 0.9999999 ) return 0;
+ if (dot < -0.9999999)
+ return LINMATHPI;
+ if (dot > 0.9999999)
+ return 0;
return FLT_ACOS(dot);
}
// algorithm found here: http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/
-void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle)
-{
+void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle) {
// TODO: this really should be external.
normalize3d(axis, axis);
FLT s = FLT_SIN(angle);
FLT c = FLT_COS(angle);
- FLT u=axis[0];
- FLT v=axis[1];
- FLT w=axis[2];
+ FLT u = axis[0];
+ FLT v = axis[1];
+ FLT w = axis[2];
- FLT x=invec3[0];
- FLT y=invec3[1];
- FLT z=invec3[2];
+ FLT x = invec3[0];
+ FLT y = invec3[1];
+ FLT z = invec3[2];
- outvec3[0] = u*(u*x + v*y + w*z)*(1-c) + x*c + (-w*y + v*z)*s;
- outvec3[1] = v*(u*x + v*y + w*z)*(1-c) + y*c + ( w*x - u*z)*s;
- outvec3[2] = w*(u*x + v*y + w*z)*(1-c) + z*c + (-v*x + u*y)*s;
+ outvec3[0] = u * (u * x + v * y + w * z) * (1 - c) + x * c + (-w * y + v * z) * s;
+ outvec3[1] = v * (u * x + v * y + w * z) * (1 - c) + y * c + (w * x - u * z) * s;
+ outvec3[2] = w * (u * x + v * y + w * z) * (1 - c) + z * c + (-v * x + u * y) * s;
}
-void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest)
-{
+void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest) {
FLT v0[3];
FLT v1[3];
normalize3d(v0, src);
normalize3d(v1, dest);
- FLT d = dot3d(v0, v1);// v0.dotProduct(v1);
+ FLT d = dot3d(v0, v1); // v0.dotProduct(v1);
// If dot == 1, vectors are the same
// If dot == -1, vectors are opposite
- if (FLT_FABS(d - 1) < DEFAULT_EPSILON)
- {
+ if (FLT_FABS(d - 1) < DEFAULT_EPSILON) {
axis[0] = 0;
axis[1] = 1;
axis[2] = 0;
*angle = 0;
return;
- }
- else if (FLT_FABS(d + 1) < DEFAULT_EPSILON)
- {
+ } else if (FLT_FABS(d + 1) < DEFAULT_EPSILON) {
axis[0] = 0;
axis[1] = 1;
axis[2] = 0;
@@ -137,33 +127,28 @@ void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest)
*angle = FLT_ACOS(d / (v0Len * v1Len));
- //cross3d(c, v0, v1);
+ // cross3d(c, v0, v1);
cross3d(axis, v1, v0);
-
}
-
-void axisanglefromquat(FLT *angle, FLT *axis, FLT *q)
-{
+void axisanglefromquat(FLT *angle, FLT *axis, FLT *q) {
// this way might be fine, too.
- //FLT dist = FLT_SQRT((q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
+ // FLT dist = FLT_SQRT((q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
//
//*angle = 2 * FLT_ATAN2(dist, q[0]);
- //axis[0] = q[1] / dist;
- //axis[1] = q[2] / dist;
- //axis[2] = q[3] / dist;
-
+ // axis[0] = q[1] / dist;
+ // axis[1] = q[2] / dist;
+ // axis[2] = q[3] / dist;
// Good mathematical foundation for this algorithm found here:
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
- FLT tmp[4] = { q[0], q[1], q[2], q[3] };
+ FLT tmp[4] = {q[0], q[1], q[2], q[3]};
quatnormalize(tmp, q);
- if (FLT_FABS(q[0] - 1) < FLT_EPSILON)
- {
+ if (FLT_FABS(q[0] - 1) < FLT_EPSILON) {
// we have a degenerate case where we're rotating approx. 0 degrees
*angle = 0;
axis[0] = 1;
@@ -180,11 +165,14 @@ void axisanglefromquat(FLT *angle, FLT *axis, FLT *q)
}
/////////////////////////////////////QUATERNIONS//////////////////////////////////////////
-//Originally from Mercury (Copyright (C) 2009 by Joshua Allen, Charles Lohr, Adam Lowman)
-//Under the mit/X11 license.
+// Originally from Mercury (Copyright (C) 2009 by Joshua Allen, Charles Lohr, Adam Lowman)
+// Under the mit/X11 license.
void quatsetnone(LinmathQuat q) {
- q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0;
+ q[0] = 1;
+ q[1] = 0;
+ q[2] = 0;
+ q[3] = 0;
}
void quatcopy(LinmathQuat qout, const LinmathQuat qin) {
@@ -195,9 +183,9 @@ void quatcopy(LinmathQuat qout, const LinmathQuat qin) {
}
void quatfromeuler(LinmathQuat q, const LinmathEulerAngle euler) {
- FLT X = euler[0]/2.0f; //roll
- FLT Y = euler[1]/2.0f; //pitch
- FLT Z = euler[2]/2.0f; //yaw
+ FLT X = euler[0] / 2.0f; // roll
+ FLT Y = euler[1] / 2.0f; // pitch
+ FLT Z = euler[2] / 2.0f; // yaw
FLT cx = FLT_COS(X);
FLT sx = FLT_SIN(X);
@@ -206,17 +194,17 @@ void quatfromeuler(LinmathQuat q, const LinmathEulerAngle euler) {
FLT cz = FLT_COS(Z);
FLT sz = FLT_SIN(Z);
- //Correct according to
- //http://en.wikipedia.org/wiki/Conversion_between_MQuaternions_and_Euler_angles
- q[0] = cx*cy*cz+sx*sy*sz;//q1
- q[1] = sx*cy*cz-cx*sy*sz;//q2
- q[2] = cx*sy*cz+sx*cy*sz;//q3
- q[3] = cx*cy*sz-sx*sy*cz;//q4
- quatnormalize( q, q );
+ // Correct according to
+ // http://en.wikipedia.org/wiki/Conversion_between_MQuaternions_and_Euler_angles
+ q[0] = cx * cy * cz + sx * sy * sz; // q1
+ q[1] = sx * cy * cz - cx * sy * sz; // q2
+ q[2] = cx * sy * cz + sx * cy * sz; // q3
+ q[3] = cx * cy * sz - sx * sy * cz; // q4
+ quatnormalize(q, q);
}
void quattoeuler(LinmathEulerAngle euler, const LinmathQuat q) {
- //According to http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles (Oct 26, 2009)
+ // According to http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles (Oct 26, 2009)
euler[0] = FLT_ATAN2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2]));
euler[1] = FLT_ASIN(2 * (q[0] * q[2] - q[3] * q[1]));
euler[2] = FLT_ATAN2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3]));
@@ -224,15 +212,15 @@ void quattoeuler(LinmathEulerAngle euler, const LinmathQuat q) {
void quatfromaxisangle(LinmathQuat q, const FLT *axis, FLT radians) {
FLT v[3];
- normalize3d( v, axis );
-
+ normalize3d(v, axis);
+
FLT sn = FLT_SIN(radians / 2.0f);
q[0] = FLT_COS(radians / 2.0f);
q[1] = sn * v[0];
q[2] = sn * v[1];
q[3] = sn * v[2];
- quatnormalize( q, q );
+ quatnormalize(q, q);
}
FLT quatmagnitude(const LinmathQuat q) {
@@ -240,19 +228,19 @@ FLT quatmagnitude(const LinmathQuat q) {
}
FLT quatinvsqmagnitude(const LinmathQuat q) {
- return ((FLT)1.)/FLT_SQRT((q[0]*q[0])+(q[1]*q[1])+(q[2]*q[2])+(q[3]*q[3]));
+ return ((FLT)1.) / FLT_SQRT((q[0] * q[0]) + (q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
}
void quatnormalize(LinmathQuat qout, const LinmathQuat qin) {
- FLT imag = quatinvsqmagnitude( qin );
- quatscale( qout, qin, imag );
+ FLT imag = quatinvsqmagnitude(qin);
+ quatscale(qout, qin, imag);
}
void quattomatrix(FLT *matrix44, const LinmathQuat qin) {
FLT q[4];
quatnormalize(q, qin);
- //Reduced calulation for speed
+ // Reduced calulation for speed
FLT xx = 2 * q[1] * q[1];
FLT xy = 2 * q[1] * q[2];
FLT xz = 2 * q[1] * q[3];
@@ -265,7 +253,7 @@ void quattomatrix(FLT *matrix44, const LinmathQuat qin) {
FLT zz = 2 * q[3] * q[3];
FLT zw = 2 * q[3] * q[0];
- //opengl major
+ // opengl major
matrix44[0] = 1 - yy - zz;
matrix44[1] = xy - zw;
matrix44[2] = xz + yw;
@@ -320,16 +308,16 @@ void quatfrommatrix33(FLT *q, const FLT *m) {
}
void quatfrommatrix(LinmathQuat q, const FLT *matrix44) {
- //Algorithm from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
+ // Algorithm from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
FLT tr = matrix44[0] + matrix44[5] + matrix44[10];
if (tr > 0) {
- FLT S = FLT_SQRT(tr+1.0) * 2.; // S=4*qw
+ FLT S = FLT_SQRT(tr + 1.0) * 2.; // S=4*qw
q[0] = 0.25f * S;
q[1] = (matrix44[9] - matrix44[6]) / S;
q[2] = (matrix44[2] - matrix44[8]) / S;
q[3] = (matrix44[4] - matrix44[1]) / S;
- } else if ((matrix44[0] > matrix44[5])&&(matrix44[0] > matrix44[10])) {
+ } else if ((matrix44[0] > matrix44[5]) && (matrix44[0] > matrix44[10])) {
FLT S = FLT_SQRT(1.0 + matrix44[0] - matrix44[5] - matrix44[10]) * 2.; // S=4*qx
q[0] = (matrix44[9] - matrix44[6]) / S;
q[1] = 0.25f * S;
@@ -350,13 +338,12 @@ void quatfrommatrix(LinmathQuat q, const FLT *matrix44) {
}
}
-
// Algorithm from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/
void quattomatrix33(FLT *matrix33, const LinmathQuat qin) {
FLT q[4];
quatnormalize(q, qin);
- //Reduced calulation for speed
+ // Reduced calulation for speed
FLT xx = 2 * q[1] * q[1];
FLT xy = 2 * q[1] * q[2];
FLT xz = 2 * q[1] * q[3];
@@ -369,8 +356,7 @@ void quattomatrix33(FLT *matrix33, const LinmathQuat qin) {
FLT zz = 2 * q[3] * q[3];
FLT zw = 2 * q[3] * q[0];
-
- //opengl major
+ // opengl major
matrix33[0] = 1 - yy - zz;
matrix33[1] = xy + zw;
matrix33[2] = xz - yw;
@@ -393,8 +379,8 @@ void quatgetconjugate(LinmathQuat qout, const LinmathQuat qin) {
void quatgetreciprocal(LinmathQuat qout, const LinmathQuat qin) {
FLT m = quatinvsqmagnitude(qin);
- quatgetconjugate( qout, qin );
- quatscale( qout, qout, m );
+ quatgetconjugate(qout, qin);
+ quatscale(qout, qout, m);
}
void quatsub(LinmathQuat qout, const FLT *a, const FLT *b) {
@@ -412,11 +398,11 @@ void quatadd(LinmathQuat qout, const FLT *a, const FLT *b) {
}
void quatrotateabout(LinmathQuat qout, const LinmathQuat q1, const LinmathQuat q2) {
- //NOTE: Does not normalize
- qout[0] = (q1[0]*q2[0])-(q1[1]*q2[1])-(q1[2]*q2[2])-(q1[3]*q2[3]);
- qout[1] = (q1[0]*q2[1])+(q1[1]*q2[0])+(q1[2]*q2[3])-(q1[3]*q2[2]);
- qout[2] = (q1[0]*q2[2])-(q1[1]*q2[3])+(q1[2]*q2[0])+(q1[3]*q2[1]);
- qout[3] = (q1[0]*q2[3])+(q1[1]*q2[2])-(q1[2]*q2[1])+(q1[3]*q2[0]);
+ // NOTE: Does not normalize
+ qout[0] = (q1[0] * q2[0]) - (q1[1] * q2[1]) - (q1[2] * q2[2]) - (q1[3] * q2[3]);
+ qout[1] = (q1[0] * q2[1]) + (q1[1] * q2[0]) + (q1[2] * q2[3]) - (q1[3] * q2[2]);
+ qout[2] = (q1[0] * q2[2]) - (q1[1] * q2[3]) + (q1[2] * q2[0]) + (q1[3] * q2[1]);
+ qout[3] = (q1[0] * q2[3]) + (q1[1] * q2[2]) - (q1[2] * q2[1]) + (q1[3] * q2[0]);
}
void quatscale(LinmathQuat qout, const LinmathQuat qin, FLT s) {
@@ -427,96 +413,87 @@ void quatscale(LinmathQuat qout, const LinmathQuat qin, FLT s) {
}
FLT quatinnerproduct(const LinmathQuat qa, const LinmathQuat qb) {
- return (qa[0]*qb[0])+(qa[1]*qb[1])+(qa[2]*qb[2])+(qa[3]*qb[3]);
+ return (qa[0] * qb[0]) + (qa[1] * qb[1]) + (qa[2] * qb[2]) + (qa[3] * qb[3]);
}
void quatouterproduct(FLT *outvec3, LinmathQuat qa, LinmathQuat qb) {
- outvec3[0] = (qa[0]*qb[1])-(qa[1]*qb[0])-(qa[2]*qb[3])+(qa[3]*qb[2]);
- outvec3[1] = (qa[0]*qb[2])+(qa[1]*qb[3])-(qa[2]*qb[0])-(qa[3]*qb[1]);
- outvec3[2] = (qa[0]*qb[3])-(qa[1]*qb[2])+(qa[2]*qb[1])-(qa[3]*qb[0]);
+ outvec3[0] = (qa[0] * qb[1]) - (qa[1] * qb[0]) - (qa[2] * qb[3]) + (qa[3] * qb[2]);
+ outvec3[1] = (qa[0] * qb[2]) + (qa[1] * qb[3]) - (qa[2] * qb[0]) - (qa[3] * qb[1]);
+ outvec3[2] = (qa[0] * qb[3]) - (qa[1] * qb[2]) + (qa[2] * qb[1]) - (qa[3] * qb[0]);
}
void quatevenproduct(LinmathQuat q, LinmathQuat qa, LinmathQuat qb) {
- q[0] = (qa[0]*qb[0])-(qa[1]*qb[1])-(qa[2]*qb[2])-(qa[3]*qb[3]);
- q[1] = (qa[0]*qb[1])+(qa[1]*qb[0]);
- q[2] = (qa[0]*qb[2])+(qa[2]*qb[0]);
- q[3] = (qa[0]*qb[3])+(qa[3]*qb[0]);
+ q[0] = (qa[0] * qb[0]) - (qa[1] * qb[1]) - (qa[2] * qb[2]) - (qa[3] * qb[3]);
+ q[1] = (qa[0] * qb[1]) + (qa[1] * qb[0]);
+ q[2] = (qa[0] * qb[2]) + (qa[2] * qb[0]);
+ q[3] = (qa[0] * qb[3]) + (qa[3] * qb[0]);
}
void quatoddproduct(FLT *outvec3, LinmathQuat qa, LinmathQuat qb) {
- outvec3[0] = (qa[2]*qb[3])-(qa[3]*qb[2]);
- outvec3[1] = (qa[3]*qb[1])-(qa[1]*qb[3]);
- outvec3[2] = (qa[1]*qb[2])-(qa[2]*qb[1]);
+ outvec3[0] = (qa[2] * qb[3]) - (qa[3] * qb[2]);
+ outvec3[1] = (qa[3] * qb[1]) - (qa[1] * qb[3]);
+ outvec3[2] = (qa[1] * qb[2]) - (qa[2] * qb[1]);
}
void quatslerp(LinmathQuat q, const LinmathQuat qa, const LinmathQuat qb, FLT t) {
FLT an[4];
FLT bn[4];
- quatnormalize( an, qa );
- quatnormalize( bn, qb );
- FLT cosTheta = quatinnerproduct(an,bn);
+ quatnormalize(an, qa);
+ quatnormalize(bn, qb);
+ FLT cosTheta = quatinnerproduct(an, bn);
FLT sinTheta;
- //Careful: If cosTheta is exactly one, or even if it's infinitesimally over, it'll
+ // Careful: If cosTheta is exactly one, or even if it's infinitesimally over, it'll
// cause SQRT to produce not a number, and screw everything up.
- if ( 1 - (cosTheta*cosTheta) <= 0 )
+ if (1 - (cosTheta * cosTheta) <= 0)
sinTheta = 0;
else
- sinTheta = FLT_SQRT(1 - (cosTheta*cosTheta));
+ sinTheta = FLT_SQRT(1 - (cosTheta * cosTheta));
- FLT Theta = FLT_ACOS(cosTheta); //Theta is half the angle between the 2 MQuaternions
+ FLT Theta = FLT_ACOS(cosTheta); // Theta is half the angle between the 2 MQuaternions
if (FLT_FABS(Theta) < DEFAULT_EPSILON)
- quatcopy( q, qa );
- else if (FLT_FABS(sinTheta) < DEFAULT_EPSILON)
- {
- quatadd( q, qa, qb );
- quatscale( q, q, 0.5 );
- }
- else
- {
+ quatcopy(q, qa);
+ else if (FLT_FABS(sinTheta) < DEFAULT_EPSILON) {
+ quatadd(q, qa, qb);
+ quatscale(q, q, 0.5);
+ } else {
FLT aside[4];
FLT bside[4];
- quatscale( bside, qb, FLT_SIN(t * Theta));
- quatscale( aside, qa, FLT_SIN((1 - t)*Theta));
- quatadd( q, aside, bside );
- quatscale( q, q, ((FLT)1.)/sinTheta );
+ quatscale(bside, qb, FLT_SIN(t * Theta));
+ quatscale(aside, qa, FLT_SIN((1 - t) * Theta));
+ quatadd(q, aside, bside);
+ quatscale(q, q, ((FLT)1.) / sinTheta);
}
}
void quatrotatevector(FLT *vec3out, const LinmathQuat quat, const FLT *vec3in) {
- //See: http://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/
+ // See: http://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/
FLT tmp[3];
FLT tmp2[3];
- cross3d( tmp, &quat[1], vec3in );
+ cross3d(tmp, &quat[1], vec3in);
tmp[0] += vec3in[0] * quat[0];
tmp[1] += vec3in[1] * quat[0];
tmp[2] += vec3in[2] * quat[0];
- cross3d( tmp2, &quat[1], tmp );
+ cross3d(tmp2, &quat[1], tmp);
vec3out[0] = vec3in[0] + 2 * tmp2[0];
vec3out[1] = vec3in[1] + 2 * tmp2[1];
vec3out[2] = vec3in[2] + 2 * tmp2[2];
}
-
// Matrix Stuff
-Matrix3x3 inverseM33(const Matrix3x3 mat)
-{
+Matrix3x3 inverseM33(const Matrix3x3 mat) {
Matrix3x3 newMat;
- for (int a = 0; a < 3; a++)
- {
- for (int b = 0; b < 3; b++)
- {
+ for (int a = 0; a < 3; a++) {
+ for (int b = 0; b < 3; b++) {
newMat.val[a][b] = mat.val[a][b];
}
}
- for (int i = 0; i < 3; i++)
- {
- for (int j = i + 1; j < 3; j++)
- {
+ for (int i = 0; i < 3; i++) {
+ for (int j = i + 1; j < 3; j++) {
FLT tmp = newMat.val[i][j];
newMat.val[i][j] = newMat.val[j][i];
newMat.val[j][i] = tmp;
@@ -526,8 +503,7 @@ Matrix3x3 inverseM33(const Matrix3x3 mat)
return newMat;
}
-void rotation_between_vecs_to_m3(Matrix3x3 *m, const FLT v1[3], const FLT v2[3])
-{
+void rotation_between_vecs_to_m3(Matrix3x3 *m, const FLT v1[3], const FLT v2[3]) {
FLT q[4];
quatfrom2vectors(q, v1, v2);
@@ -535,8 +511,7 @@ void rotation_between_vecs_to_m3(Matrix3x3 *m, const FLT v1[3], const FLT v2[3])
quattomatrix33(&(m->val[0][0]), q);
}
-void rotate_vec(FLT *out, const FLT *in, Matrix3x3 rot)
-{
+void rotate_vec(FLT *out, const FLT *in, Matrix3x3 rot) {
out[0] = rot.val[0][0] * in[0] + rot.val[1][0] * in[1] + rot.val[2][0] * in[2];
out[1] = rot.val[0][1] * in[0] + rot.val[1][1] * in[1] + rot.val[2][1] * in[2];
out[2] = rot.val[0][2] * in[0] + rot.val[1][2] * in[1] + rot.val[2][2] * in[2];
@@ -544,7 +519,6 @@ void rotate_vec(FLT *out, const FLT *in, Matrix3x3 rot)
return;
}
-
// This function based on code from Object-oriented Graphics Rendering Engine
// Copyright(c) 2000 - 2012 Torus Knot Software Ltd
// under MIT license
@@ -557,8 +531,7 @@ If you call this with a dest vector that is close to the inverse
of this vector, we will rotate 180 degrees around a generated axis if
since in this case ANY axis of rotation is valid.
*/
-void quatfrom2vectors(FLT *q, const FLT *src, const FLT *dest)
-{
+void quatfrom2vectors(FLT *q, const FLT *src, const FLT *dest) {
// Based on Stan Melax's article in Game Programming Gems
// Copy, since cannot modify local
@@ -567,32 +540,26 @@ void quatfrom2vectors(FLT *q, const FLT *src, const FLT *dest)
normalize3d(v0, src);
normalize3d(v1, dest);
- FLT d = dot3d(v0, v1);// v0.dotProduct(v1);
+ FLT d = dot3d(v0, v1); // v0.dotProduct(v1);
// If dot == 1, vectors are the same
- if (d >= 1.0f)
- {
+ if (d >= 1.0f) {
quatsetnone(q);
return;
}
- if (d < (1e-6f - 1.0f))
- {
+ if (d < (1e-6f - 1.0f)) {
// Generate an axis
- FLT unitX[3] = { 1, 0, 0 };
- FLT unitY[3] = { 0, 1, 0 };
-
+ FLT unitX[3] = {1, 0, 0};
+ FLT unitY[3] = {0, 1, 0};
+
FLT axis[3];
- cross3d(axis, unitX, src); // pick an angle
- if ((axis[0] < 1.0e-35f) &&
- (axis[1] < 1.0e-35f) &&
- (axis[2] < 1.0e-35f)) // pick another if colinear
+ cross3d(axis, unitX, src); // pick an angle
+ if ((axis[0] < 1.0e-35f) && (axis[1] < 1.0e-35f) && (axis[2] < 1.0e-35f)) // pick another if colinear
{
cross3d(axis, unitY, src);
}
normalize3d(axis, axis);
quatfromaxisangle(q, axis, LINMATHPI);
- }
- else
- {
+ } else {
FLT s = FLT_SQRT((1 + d) * 2);
FLT invs = 1 / s;
@@ -608,13 +575,9 @@ void quatfrom2vectors(FLT *q, const FLT *src, const FLT *dest)
}
}
-void matrix44copy(FLT * mout, const FLT * minm )
-{
- memcpy( mout, minm, sizeof( FLT ) * 16 );
-}
+void matrix44copy(FLT *mout, const FLT *minm) { memcpy(mout, minm, sizeof(FLT) * 16); }
-void matrix44transpose(FLT * mout, const FLT * minm )
-{
+void matrix44transpose(FLT *mout, const FLT *minm) {
mout[0] = minm[0];
mout[1] = minm[4];
mout[2] = minm[8];
@@ -634,7 +597,6 @@ void matrix44transpose(FLT * mout, const FLT * minm )
mout[13] = minm[7];
mout[14] = minm[11];
mout[15] = minm[15];
-
}
void ApplyPoseToPoint(LinmathPoint3d pout, const LinmathPose *pose, const LinmathPoint3d pin) {
@@ -654,5 +616,18 @@ void InvertPose(LinmathPose *poseout, const LinmathPose *pose) {
scale3d(poseout->Pos, poseout->Pos, -1);
}
+void PoseToMatrix(FLT *matrix44, const LinmathPose *pose_in) {
+ quattomatrix(matrix44, pose_in->Rot);
+
+ /*
+ matrix44[12] = pose_in->Pos[0];
+ matrix44[13] = pose_in->Pos[1];
+ matrix44[14] = pose_in->Pos[2];
+ */
+ matrix44[3] = pose_in->Pos[0];
+ matrix44[7] = pose_in->Pos[1];
+ matrix44[11] = pose_in->Pos[2];
+}
+
LinmathQuat LinmathQuat_Identity = {1.0};
LinmathPose LinmathPose_Identity = {.Rot = {1.0}};
diff --git a/redist/linmath.h b/redist/linmath.h
index 5d5bed2..1a73a06 100644
--- a/redist/linmath.h
+++ b/redist/linmath.h
@@ -1,18 +1,18 @@
-//Copyright 2013,2016 <>< C. N. Lohr. This file licensed under the terms of the MIT/x11 license.
+// Copyright 2013,2016 <>< C. N. Lohr. This file licensed under the terms of the MIT/x11 license.
#ifndef _LINMATH_H
#define _LINMATH_H
-//Yes, I know it's kind of arbitrary.
+// Yes, I know it's kind of arbitrary.
#define DEFAULT_EPSILON 0.001
-//For printf
+// For printf
#define PFTHREE(x) (x)[0], (x)[1], (x)[2]
#define PFFOUR(x) (x)[0], (x)[1], (x)[2], (x)[3]
#define LINMATHPI ((FLT)3.141592653589)
-//uncomment the following line to use double precision instead of single precision.
+// uncomment the following line to use double precision instead of single precision.
//#define USE_DOUBLE
#ifdef USE_DOUBLE
@@ -20,11 +20,11 @@
#define FLT double
#define FLT_SQRT sqrt
#define FLT_TAN tan
-#define FLT_SIN sin
-#define FLT_COS cos
-#define FLT_ACOS acos
-#define FLT_ASIN asin
-#define FLT_ATAN2 atan2
+#define FLT_SIN sin
+#define FLT_COS cos
+#define FLT_ACOS acos
+#define FLT_ASIN asin
+#define FLT_ATAN2 atan2
#define FLT_FABS__ fabs
#else
@@ -32,17 +32,17 @@
#define FLT float
#define FLT_SQRT sqrtf
#define FLT_TAN tanf
-#define FLT_SIN sinf
-#define FLT_COS cosf
-#define FLT_ACOS acosf
-#define FLT_ASIN asinf
-#define FLT_ATAN2 atan2f
+#define FLT_SIN sinf
+#define FLT_COS cosf
+#define FLT_ACOS acosf
+#define FLT_ASIN asinf
+#define FLT_ATAN2 atan2f
#define FLT_FABS__ fabsf
#endif
#ifdef TCC
-#define FLT_FABS(x) (((x)<0)?(-(x)):(x))
+#define FLT_FABS(x) (((x) < 0) ? (-(x)) : (x))
#else
#define FLT_FABS FLT_FABS__
#endif
@@ -59,33 +59,33 @@ typedef struct LinmathPose {
extern LinmathQuat LinmathQuat_Identity;
extern LinmathPose LinmathPose_Identity;
-//NOTE: Inputs may never be output with cross product.
-void cross3d( FLT * out, const FLT * a, const FLT * b );
+// NOTE: Inputs may never be output with cross product.
+void cross3d(FLT *out, const FLT *a, const FLT *b);
-void sub3d( FLT * out, const FLT * a, const FLT * b );
+void sub3d(FLT *out, const FLT *a, const FLT *b);
-void add3d( FLT * out, const FLT * a, const FLT * b );
+void add3d(FLT *out, const FLT *a, const FLT *b);
-void scale3d( FLT * out, const FLT * a, FLT scalar );
+void scale3d(FLT *out, const FLT *a, FLT scalar);
-void normalize3d( FLT * out, const FLT * in );
+void normalize3d(FLT *out, const FLT *in);
-FLT dot3d( const FLT * a, const FLT * b );
+FLT dot3d(const FLT *a, const FLT *b);
-//Returns 0 if equal. If either argument is null, 0 will ALWAYS be returned.
-int compare3d( const FLT * a, const FLT * b, FLT epsilon );
+// Returns 0 if equal. If either argument is null, 0 will ALWAYS be returned.
+int compare3d(const FLT *a, const FLT *b, FLT epsilon);
-void copy3d( FLT * out, const FLT * in );
+void copy3d(FLT *out, const FLT *in);
-FLT magnitude3d(const FLT * a );
+FLT magnitude3d(const FLT *a);
-FLT anglebetween3d( FLT * a, FLT * b );
+FLT anglebetween3d(FLT *a, FLT *b);
void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle);
void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest);
void axisanglefromquat(FLT *angle, FLT *axis, LinmathQuat quat);
-//Quaternion things...
+// Quaternion things...
typedef FLT LinmathEulerAngle[3];
@@ -126,10 +126,10 @@ void ApplyPoseToPose(LinmathPose *pout, const LinmathPose *lhs_pose, const Linma
// by definition.
void InvertPose(LinmathPose *poseout, const LinmathPose *pose_in);
+void PoseToMatrix(FLT *mat44, const LinmathPose *pose_in);
// Matrix Stuff
-typedef struct
-{
+typedef struct {
FLT val[3][3]; // row, column
} Matrix3x3;
@@ -137,12 +137,7 @@ void rotate_vec(FLT *out, const FLT *in, Matrix3x3 rot);
void rotation_between_vecs_to_m3(Matrix3x3 *m, const FLT v1[3], const FLT v2[3]);
Matrix3x3 inverseM33(const Matrix3x3 mat);
-
-void matrix44copy(FLT * mout, const FLT * minm );
-void matrix44transpose(FLT * mout, const FLT * minm );
-
+void matrix44copy(FLT *mout, const FLT *minm);
+void matrix44transpose(FLT *mout, const FLT *minm);
#endif
-
-
-