1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
|
#include <survive.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <assert.h>
#include "linmath.h"
#include <stddef.h>
#include <math.h>
#include <stdint.h>
#if defined(__FreeBSD__) || defined(__APPLE__)
#include <stdlib.h>
#else
#include <malloc.h> //for alloca
#endif
#define PointToFlts(x) ((FLT*)(x))
typedef struct
{
FLT x;
FLT y;
FLT z;
} Point;
void writePoint(FILE *file, double x, double y, double z, unsigned int rgb) {}
void updateHeader(FILE * file) {}
void writeAxes(FILE * file) {}
void drawLineBetweenPoints(FILE *file, Point a, Point b, unsigned int color) {}
void writePcdHeader(FILE * file) {}
void writePointCloud(FILE *f, Point *pointCloud, unsigned int Color) {}
void markPointWithStar(FILE *file, Point point, unsigned int color) {}
typedef struct
{
Point point; // location of the sensor on the tracked object;
Point normal; // unit vector indicating the normal for the sensor
double theta; // "horizontal" angular measurement from lighthouse radians
double phi; // "vertical" angular measurement from lighthouse in radians.
} TrackedSensor;
typedef struct
{
size_t numSensors;
TrackedSensor sensor[0];
} TrackedObject;
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif
#define SQUARED(x) ((x)*(x))
typedef union
{
struct
{
unsigned char Blue;
unsigned char Green;
unsigned char Red;
unsigned char Alpha;
};
uint32_t long_value;
} RGBValue;
static RGBValue RED = { .Red = 255,.Green = 0,.Blue = 0,.Alpha = 125 };
static RGBValue GREEN = { .Red = 0,.Green = 255,.Blue = 0,.Alpha = 125 };
static RGBValue BLUE = { .Red = 0,.Green = 0,.Blue = 255,.Alpha = 125 };
static const double WORLD_BOUNDS = 100;
#define MAX_TRACKED_POINTS 40
static const float DefaultPointsPerOuterDiameter = 60;
typedef struct
{
FLT down[3]; // populated by the IMU for posing
//Stuff
#define OLD_ANGLES_BUFF_LEN 3
FLT oldAngles[SENSORS_PER_OBJECT][2][NUM_LIGHTHOUSES][OLD_ANGLES_BUFF_LEN]; // sensor, sweep axis, lighthouse, instance
int angleIndex[NUM_LIGHTHOUSES][2]; // index into circular buffer ahead. separate index for each axis.
int lastAxis[NUM_LIGHTHOUSES];
Point lastLhPos[NUM_LIGHTHOUSES];
FLT lastLhRotAxisAngle[NUM_LIGHTHOUSES][4];
} ToriData;
static FLT distance(Point a, Point b)
{
FLT x = a.x - b.x;
FLT y = a.y - b.y;
FLT z = a.z - b.z;
return FLT_SQRT(x*x + y*y + z*z);
}
Matrix3x3 GetRotationMatrixForTorus(Point a, Point b)
{
Matrix3x3 result;
FLT v1[3] = { 0, 0, 1 };
FLT v2[3] = { a.x - b.x, a.y - b.y, a.z - b.z };
normalize3d(v2, v2);
rotation_between_vecs_to_m3(&result, v1, v2);
// Useful for debugging...
//FLT v2b[3];
//rotate_vec(v2b, v1, result);
return result;
}
typedef struct
{
Point a;
Point b;
FLT angle;
FLT tanAngle; // tangent of angle
Matrix3x3 rotation;
Matrix3x3 invRotation; // inverse of rotation
char ai;
char bi;
} PointsAndAngle;
Point RotateAndTranslatePoint(Point p, Matrix3x3 rot, Point newOrigin)
{
Point q;
double pf[3] = { p.x, p.y, p.z };
q.x = rot.val[0][0] * p.x + rot.val[1][0] * p.y + rot.val[2][0] * p.z + newOrigin.x;
q.y = rot.val[0][1] * p.x + rot.val[1][1] * p.y + rot.val[2][1] * p.z + newOrigin.y;
q.z = rot.val[0][2] * p.x + rot.val[1][2] * p.y + rot.val[2][2] * p.z + newOrigin.z;
return q;
}
double angleFromPoints(Point p1, Point p2, Point center)
{
Point v1, v2, v1norm, v2norm;
v1.x = p1.x - center.x;
v1.y = p1.y - center.y;
v1.z = p1.z - center.z;
v2.x = p2.x - center.x;
v2.y = p2.y - center.y;
v2.z = p2.z - center.z;
double v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z);
v1norm.x = v1.x / v1mag;
v1norm.y = v1.y / v1mag;
v1norm.z = v1.z / v1mag;
double v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z);
v2norm.x = v2.x / v2mag;
v2norm.y = v2.y / v2mag;
v2norm.z = v2.z / v2mag;
double res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z;
double angle = acos(res);
return angle;
}
Point midpoint(Point a, Point b)
{
Point m;
m.x = (a.x + b.x) / 2;
m.y = (a.y + b.y) / 2;
m.z = (a.z + b.z) / 2;
return m;
}
// What we're doing here is:
// * Given a point in space
// * And points and a lighthouse angle that implicitly define a torus
// * for that torus, what is the toroidal angle of the plane that will go through that point in space
// * and given that toroidal angle, what is the poloidal angle that will be directed toward that point in space?
void estimateToroidalAndPoloidalAngleOfPoint(
PointsAndAngle *pna,
Point point,
double *toroidalSin,
double *toroidalCos,
double *poloidalAngle,
double *poloidalSin)
{
// We take the inverse of the rotation matrix, and this now defines a rotation matrix that will take us from
// the tracked object coordinate system into the "easy" or "default" coordinate system of the torus.
// Using this will allow us to derive angles much more simply by being in a "friendly" coordinate system.
Matrix3x3 rot = pna->invRotation;
Point origin;
origin.x = 0;
origin.y = 0;
origin.z = 0;
Point m = midpoint(pna->a, pna->b);
// in this new coordinate system, we'll rename all of the points we care about to have an "F" after them
// This will be their representation in the "friendly" coordinate system
Point pointF;
// Okay, I lied a little above. In addition to the rotation matrix that we care about, there was also
// a translation that we did to move the origin. If we're going to get to the "friendly" coordinate system
// of the torus, we need to first undo the translation, then undo the rotation. Below, we're undoing the translation.
pointF.x = point.x - m.x;
pointF.y = point.y - m.y;
pointF.z = point.z - m.z;
// now we'll undo the rotation part.
pointF = RotateAndTranslatePoint(pointF, rot, origin);
// hooray, now pointF is in our more-friendly coordinate system.
// Now, it's time to figure out the toroidal angle to that point. This should be pretty easy.
// We will "flatten" the z dimension to only look at the x and y values. Then, we just need to measure the
// angle between a vector to pointF and a vector along the x axis.
FLT toroidalHyp = FLT_SQRT(SQUARED(pointF.y) + SQUARED(pointF.x));
*toroidalSin = pointF.y / toroidalHyp;
*toroidalCos = pointF.x / toroidalHyp;
//*toroidalAngle = atan(pointF.y / pointF.x);
//if (pointF.x < 0)
//{
// *toroidalAngle += M_PI;
//}
//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);
//assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 < 0.000001);
//assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 > -0.000001);
// SCORE!! We've got the toroidal angle. We're half done!
// Okay, what next...? Now, we will need to rotate the torus *again* to make it easy to
// figure out the poloidal angle. We should rotate the entire torus by the toroidal angle
// so that the point we're focusin on will lie on the x/z plane. We then should translate the
// torus so that the center of the poloidal circle is at the origin. At that point, it will
// be trivial to determine the poloidal angle-- it will be the angle on the xz plane of a
// vector from the origin to the point.
// okay, instead of rotating the torus & point by the toroidal angle to get the point on
// the xz plane, we're going to take advantage of the radial symmetry of the torus
// (i.e. it's symmetric about the point we'd want to rotate it, so the rotation wouldn't
// change the torus at all). Therefore, we'll leave the torus as is, but we'll rotate the point
// This will only impact the x and y coordinates, and we'll use "G" as the postfix to represent
// this new coordinate system
Point pointG;
pointG.z = pointF.z;
pointG.y = 0;
pointG.x = sqrt(SQUARED(pointF.x) + SQUARED(pointF.y));
// okay, that ended up being easier than I expected. Now that we have the point on the xZ plane,
// our next step will be to shift it down so that the center of the poloidal circle is at the origin.
// As you may have noticed, y has now gone to zero, and from here on out, we can basically treat
// this as a 2D problem. I think we're getting close...
// I stole these lines from the torus generator. Gonna need the poloidal radius.
double distanceBetweenPoints = distance(pna->a, pna->b); // we don't care about the coordinate system of these points because we're just getting distance.
double toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
double poloidalRadius = sqrt(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));
// The center of the polidal circle already lies on the z axis at this point, so we won't shift z at all.
// The shift along the X axis will be the toroidal radius.
Point pointH;
pointH.z = pointG.z;
pointH.y = pointG.y;
pointH.x = pointG.x - toroidalRadius;
// Okay, almost there. If we treat pointH as a vector on the XZ plane, if we get its angle,
// that will be the poloidal angle we're looking for. (crosses fingers)
FLT poloidalHyp = FLT_SQRT(SQUARED(pointH.z) + SQUARED(pointH.x));
*poloidalSin = pointH.z / poloidalHyp;
*poloidalAngle = atan(pointH.z / pointH.x);
if (pointH.x < 0)
{
*poloidalAngle += M_PI;
}
//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
//assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);
// Wow, that ended up being not so much code, but a lot of interesting trig.
// can't remember the last time I spent so much time working through each line of code.
return;
}
#define MAX_POINT_PAIRS 100
FLT angleBetweenSensors(TrackedSensor *a, TrackedSensor *b)
{
FLT angle = FLT_ACOS(FLT_COS(a->phi - b->phi)*FLT_COS(a->theta - b->theta));
//FLT angle2 = FLT_ACOS(FLT_COS(b->phi - a->phi)*FLT_COS(b->theta - a->theta));
return angle;
}
// This provides a pretty good estimate of the angle above, probably better
// the further away the lighthouse is. But, it's not crazy-precise.
// It's main advantage is speed.
FLT pythAngleBetweenSensors2(TrackedSensor *a, TrackedSensor *b)
{
FLT p = (a->phi - b->phi);
FLT d = (a->theta - b->theta);
FLT adjd = FLT_SIN((a->phi + b->phi) / 2);
FLT adjP = FLT_SIN((a->theta + b->theta) / 2);
FLT pythAngle = sqrt(SQUARED(p*adjP) + SQUARED(d*adjd));
return pythAngle;
}
Point calculateTorusPointFromAngles(PointsAndAngle *pna, FLT toroidalSin, FLT toroidalCos, FLT poloidalAngle, FLT poloidalSin)
{
Point result;
FLT distanceBetweenPoints = distance(pna->a, pna->b);
Point m = midpoint(pna->a, pna->b);
Matrix3x3 rot = pna->rotation;
FLT toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
FLT poloidalRadius = FLT_SQRT(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));
result.x = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalCos;
result.y = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalSin;
result.z = poloidalRadius*poloidalSin;
result = RotateAndTranslatePoint(result, rot, m);
return result;
}
FLT getPointFitnessForPna(Point pointIn, PointsAndAngle *pna)
{
double toroidalSin = 0;
double toroidalCos = 0;
double poloidalAngle = 0;
double poloidalSin = 0;
estimateToroidalAndPoloidalAngleOfPoint(
pna,
pointIn,
&toroidalSin,
&toroidalCos,
&poloidalAngle,
&poloidalSin);
Point torusPoint = calculateTorusPointFromAngles(pna, toroidalSin, toroidalCos, poloidalAngle, poloidalSin);
FLT dist = distance(pointIn, torusPoint);
// This is some voodoo black magic. This is here to solve the problem that the origin
// (which is near the center of all the tori) erroniously will rank as a good match.
// through a lot of empiracle testing on how to compensate for this, the "fudge factor"
// below ended up being the best fit. As simple as it is, I have a strong suspicion
// that there's some crazy complex thesis-level math that could be used to derive this
// but it works so we'll run with it.
// Note that this may be resulting in a skewing of the found location by several millimeters.
// it is not clear if this is actually removing existing skew (to get a more accurate value)
// or if it is introducing an undesirable skew.
double fudge = FLT_SIN((poloidalAngle - M_PI) / 2);
dist = dist / fudge;
return dist;
}
FLT getPointFitness(Point pointIn, PointsAndAngle *pna, size_t pnaCount, int deubgPrint)
{
FLT fitness;
FLT resultSum = 0;
FLT *fitnesses = alloca(sizeof(FLT) * pnaCount);
int i=0, j=0;
FLT worstFitness = 0;
for (size_t i = 0; i < pnaCount; i++)
{
fitness = getPointFitnessForPna(pointIn, &(pna[i]));
if (worstFitness < fitness)
{
i = pna[i].ai;
j = pna[i].bi;
worstFitness = fitness;
}
fitnesses[i] = fitness;
if (deubgPrint)
{
printf(" [%d, %d](%f)\n", pna[i].ai, pna[i].bi, fitness);
}
}
for (size_t i = 0; i < pnaCount; i++)
{
// TODO: This is an UGLY HACK!!! It is NOT ROBUST and MUST BE BETTER
// Right now, we're just throwing away the single worst fitness value
// this works frequently, but we REALLY need to do a better job of determing
// exactly when we should throw away a bad value. I'm thinking that decision
// alone could be a master's thesis, so lots of work to be done.
// This is just a stupid general approach that helps in a lot of cases,
// but is NOT suitable for long term use.
//if (pna[i].bi != i && pna[i].bi != j && pna[i].ai != i && pna[i].ai != j)
if (fitnesses[i] != worstFitness)
resultSum += SQUARED(fitnesses[i]);
}
return 1 / FLT_SQRT(resultSum);
}
// TODO: Use a central point instead of separate "minus" points for each axis. This will reduce
// the number of fitness calls by 1/3.
Point getGradient(Point pointIn, PointsAndAngle *pna, size_t pnaCount, FLT precision)
{
Point result;
FLT baseFitness = getPointFitness(pointIn, pna, pnaCount, 0);
Point tmpXplus = pointIn;
Point tmpXminus = pointIn;
tmpXplus.x = pointIn.x + precision;
tmpXminus.x = pointIn.x - precision;
result.x = baseFitness - getPointFitness(tmpXminus, pna, pnaCount, 0);
Point tmpYplus = pointIn;
Point tmpYminus = pointIn;
tmpYplus.y = pointIn.y + precision;
tmpYminus.y = pointIn.y - precision;
result.y = baseFitness - getPointFitness(tmpYminus, pna, pnaCount, 0);
Point tmpZplus = pointIn;
Point tmpZminus = pointIn;
tmpZplus.z = pointIn.z + precision;
tmpZminus.z = pointIn.z - precision;
result.z = baseFitness - getPointFitness(tmpZminus, pna, pnaCount, 0);
return result;
}
Point getNormalizedAndScaledVector(Point vectorIn, FLT desiredMagnitude)
{
FLT distanceIn = sqrt(SQUARED(vectorIn.x) + SQUARED(vectorIn.y) + SQUARED(vectorIn.z));
FLT scale = desiredMagnitude / distanceIn;
Point result = vectorIn;
result.x *= scale;
result.y *= scale;
result.z *= scale;
return result;
}
Point getAvgPoints(Point a, Point b)
{
Point result;
result.x = (a.x + b.x) / 2;
result.y = (a.y + b.y) / 2;
result.z = (a.z + b.z) / 2;
return result;
}
// This is modifies the basic gradient descent algorithm to better handle the shallow valley case,
// which appears to be typical of this convergence.
static Point RefineEstimateUsingModifiedGradientDescent1(Point initialEstimate, PointsAndAngle *pna, size_t pnaCount, FILE *logFile)
{
int i = 0;
FLT lastMatchFitness = getPointFitness(initialEstimate, pna, pnaCount, 0);
Point lastPoint = initialEstimate;
// The values below are somewhat magic, and definitely tunable
// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
// bigger values may be faster, especially when the initial guess is wildly off.
// The downside to a bigger starting guess is that if we've picked a good guess at the local minima
// if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
// That's fairly unlikely with the lighthouse problem, from expereince.
// The other downside is that if it's too big, we may have to spend a few iterations before it gets down
// to a size that doesn't jump us out of our minima.
// The terminal value of g represents how close we want to get to the local minima before we're "done"
// The change in value of g for each iteration is intentionally very close to 1.
// in fact, it probably could probably be 1 without any issue. The main place where g is decremented
// is in the block below when we've made a jump that results in a worse fitness than we're starting at.
// In those cases, we don't take the jump, and instead lower the value of g and try again.
for (FLT g = 0.2; g > 0.00001; g *= 0.99)
{
i++;
Point point1 = lastPoint;
// let's get 3 iterations of gradient descent here.
Point gradient1 = getGradient(point1, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
Point gradientN1 = getNormalizedAndScaledVector(gradient1, g);
Point point2;
point2.x = point1.x + gradientN1.x;
point2.y = point1.y + gradientN1.y;
point2.z = point1.z + gradientN1.z;
Point gradient2 = getGradient(point2, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
Point gradientN2 = getNormalizedAndScaledVector(gradient2, g);
Point point3;
point3.x = point2.x + gradientN2.x;
point3.y = point2.y + gradientN2.y;
point3.z = point2.z + gradientN2.z;
// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
// gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
// converging gradient descent makes. Instead of using the gradient as the best indicator of
// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
// following *that* vector. As it turns out, this works *amazingly* well.
Point specialGradient = { .x = point3.x - point1.x,.y = point3.y - point1.y,.z = point3.y - point1.y };
// The second parameter to this function is very much a tunable parameter. Different values will result
// in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
// It's not clear what would be optimum here.
specialGradient = getNormalizedAndScaledVector(specialGradient, g / 4);
Point point4;
point4.x = point3.x + specialGradient.x;
point4.y = point3.y + specialGradient.y;
point4.z = point3.z + specialGradient.z;
FLT newMatchFitness = getPointFitness(point4, pna, pnaCount, 0);
if (newMatchFitness > lastMatchFitness)
{
if (logFile)
{
writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
}
lastMatchFitness = newMatchFitness;
lastPoint = point4;
#ifdef TORI_DEBUG
printf("+");
#endif
}
else
{
#ifdef TORI_DEBUG
printf("-");
#endif
g *= 0.7;
}
// from empiracle evidence, we're probably "good enough" at this point.
// So, even though we could still improve, we're likely to be improving
// very slowly, and we should just take what we've got and move on.
// This also seems to happen almost only when data is a little more "dirty"
// because the tracker is being rotated.
if (i > 120)
{
//printf("i got big");
break;
}
}
printf(" i=%3d ", i);
return lastPoint;
}
// interesting-- this is one place where we could use any sensors that are only hit by
// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
FLT RotationEstimateFitnessOld(Point lhPoint, FLT *quaternion, TrackedObject *obj)
{
FLT fitness = 0;
for (size_t i = 0; i < obj->numSensors; i++)
{
// first, get the normal of the plane for the horizonal sweep
FLT theta = obj->sensor[i].theta;
// make two vectors that lie on the plane
FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
FLT tNormH[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormH, t1H, t2H);
normalize3d(tNormH, tNormH);
// Now do the same for the vertical sweep
// first, get the normal of the plane for the horizonal sweep
FLT phi = obj->sensor[i].phi;
// make two vectors that lie on the plane
FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
FLT tNormV[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormV, t1V, t2V);
normalize3d(tNormV, tNormV);
// First, where is the sensor in the object's reference frame?
FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
// Where is the point, in the reference frame of the lighthouse?
// This has two steps, first we translate from the object's location being the
// origin to the lighthouse being the origin.
// And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
FLT sensor_in_lh_reference_frame[3];
sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
// now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
// We need an arbitrary vector from the plane to the point.
// Since the plane goes through the origin, this is trivial.
// The sensor point itself is such a vector!
// And go calculate the distances!
// TODO: don't need to ABS these because we square them below.
FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
fitness += SQUARED(dH);
fitness += SQUARED(dV);
}
fitness = FLT_SQRT(fitness);
return fitness;
}
FLT RotationEstimateFitnessAxisAngle(Point lh, FLT *AxisAngle, TrackedObject *obj)
{
// For this fitness calculator, we're going to use the rotation information to figure out where
// we expect to see the tracked object sensors, and we'll do a sum of squares to grade
// the quality of the guess formed by the AxisAngle;
FLT fitness = 0;
// for each point in the tracked object
for (int i=0; i< obj->numSensors; i++)
{
// let's see... we need to figure out where this sensor should be in the LH reference frame.
FLT sensorLocation[3] = {obj->sensor[i].point.x-lh.x, obj->sensor[i].point.y-lh.y, obj->sensor[i].point.z-lh.z};
// And this puppy needs to be rotated...
rotatearoundaxis(sensorLocation, sensorLocation, AxisAngle, AxisAngle[3]);
// Now, the vector indicating the position of the sensor, as seen by the lighthouse is:
FLT realVectFromLh[3] = {1, tan(obj->sensor[i].theta - LINMATHPI/2), tan(obj->sensor[i].phi - LINMATHPI/2)};
// and the vector we're calculating given the rotation passed in is the same as the sensor location:
FLT calcVectFromLh[3] = {sensorLocation[0], sensorLocation[1], sensorLocation[2]};
FLT angleBetween = anglebetween3d( realVectFromLh, calcVectFromLh );
fitness += SQUARED(angleBetween);
}
return 1/FLT_SQRT(fitness);
}
// This figures out how far away from the scanned planes each point is, then does a sum of squares
// for the fitness.
//
// interesting-- this is one place where we could use any sensors that are only hit by
// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
FLT RotationEstimateFitnessAxisAngleOriginal(Point lhPoint, FLT *quaternion, TrackedObject *obj)
{
FLT fitness = 0;
for (size_t i = 0; i < obj->numSensors; i++)
{
// first, get the normal of the plane for the horizonal sweep
FLT theta = obj->sensor[i].theta;
// make two vectors that lie on the plane
FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
FLT tNormH[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormH, t1H, t2H);
normalize3d(tNormH, tNormH);
// Now do the same for the vertical sweep
// first, get the normal of the plane for the horizonal sweep
FLT phi = obj->sensor[i].phi;
// make two vectors that lie on the plane
FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
FLT tNormV[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormV, t1V, t2V);
normalize3d(tNormV, tNormV);
// First, where is the sensor in the object's reference frame?
FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
// Where is the point, in the reference frame of the lighthouse?
// This has two steps, first we translate from the object's location being the
// origin to the lighthouse being the origin.
// And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
FLT sensor_in_lh_reference_frame[3];
sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
//quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
rotatearoundaxis(sensor_in_lh_reference_frame, sensor_in_lh_reference_frame, quaternion, quaternion[3]);
// now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
// We need an arbitrary vector from the plane to the point.
// Since the plane goes through the origin, this is trivial.
// The sensor point itself is such a vector!
// And go calculate the distances!
// TODO: don't need to ABS these because we square them below.
FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
fitness += SQUARED(dH);
fitness += SQUARED(dV);
}
fitness = FLT_SQRT(fitness);
return 1/fitness;
}
// interesting-- this is one place where we could use any sensors that are only hit by
// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
FLT RotationEstimateFitnessQuaternion(Point lhPoint, FLT *quaternion, TrackedObject *obj)
{
FLT fitness = 0;
for (size_t i = 0; i < obj->numSensors; i++)
{
// first, get the normal of the plane for the horizonal sweep
FLT theta = obj->sensor[i].theta;
// make two vectors that lie on the plane
FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
FLT tNormH[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormH, t1H, t2H);
normalize3d(tNormH, tNormH);
// Now do the same for the vertical sweep
// first, get the normal of the plane for the horizonal sweep
FLT phi = obj->sensor[i].phi;
// make two vectors that lie on the plane
FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
FLT tNormV[3];
// the normal is the cross of two vectors on the plane.
cross3d(tNormV, t1V, t2V);
normalize3d(tNormV, tNormV);
// First, where is the sensor in the object's reference frame?
FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
// Where is the point, in the reference frame of the lighthouse?
// This has two steps, first we translate from the object's location being the
// origin to the lighthouse being the origin.
// And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
FLT sensor_in_lh_reference_frame[3];
sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
//rotatearoundaxis(sensor_in_lh_reference_frame, sensor_in_lh_reference_frame, quaternion, quaternion[3]);
// now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
// We need an arbitrary vector from the plane to the point.
// Since the plane goes through the origin, this is trivial.
// The sensor point itself is such a vector!
// And go calculate the distances!
// TODO: don't need to ABS these because we square them below.
FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
fitness += SQUARED(dH);
fitness += SQUARED(dV);
}
fitness = FLT_SQRT(fitness);
return 1/fitness;
}
void getRotationGradientQuaternion(FLT *gradientOut, Point lhPoint, FLT *quaternion, TrackedObject *obj, FLT precision)
{
FLT baseFitness = RotationEstimateFitnessQuaternion(lhPoint, quaternion, obj);
FLT tmp0plus[4];
quatadd(tmp0plus, quaternion, (FLT[4]){precision, 0, 0, 0});
gradientOut[0] = RotationEstimateFitnessQuaternion(lhPoint, tmp0plus, obj) - baseFitness;
FLT tmp1plus[4];
quatadd(tmp1plus, quaternion, (FLT[4]){0, precision, 0, 0});
gradientOut[1] = RotationEstimateFitnessQuaternion(lhPoint, tmp1plus, obj) - baseFitness;
FLT tmp2plus[4];
quatadd(tmp2plus, quaternion, (FLT[4]){0, 0, precision, 0});
gradientOut[2] = RotationEstimateFitnessQuaternion(lhPoint, tmp2plus, obj) - baseFitness;
FLT tmp3plus[4];
quatadd(tmp3plus, quaternion, (FLT[4]){0, 0, 0, precision});
gradientOut[3] = RotationEstimateFitnessQuaternion(lhPoint, tmp3plus, obj) - baseFitness;
return;
}
void getRotationGradientAxisAngle(FLT *gradientOut, Point lhPoint, FLT *quaternion, TrackedObject *obj, FLT precision)
{
FLT baseFitness = RotationEstimateFitnessAxisAngle(lhPoint, quaternion, obj);
FLT tmp0plus[4];
quatadd(tmp0plus, quaternion, (FLT[4]){precision, 0, 0, 0});
gradientOut[0] = RotationEstimateFitnessAxisAngle(lhPoint, tmp0plus, obj) - baseFitness;
FLT tmp1plus[4];
quatadd(tmp1plus, quaternion, (FLT[4]){0, precision, 0, 0});
gradientOut[1] = RotationEstimateFitnessAxisAngle(lhPoint, tmp1plus, obj) - baseFitness;
FLT tmp2plus[4];
quatadd(tmp2plus, quaternion, (FLT[4]){0, 0, precision, 0});
gradientOut[2] = RotationEstimateFitnessAxisAngle(lhPoint, tmp2plus, obj) - baseFitness;
FLT tmp3plus[4];
quatadd(tmp3plus, quaternion, (FLT[4]){0, 0, 0, precision});
gradientOut[3] = RotationEstimateFitnessAxisAngle(lhPoint, tmp3plus, obj) - baseFitness;
return;
}
//void getNormalizedAndScaledRotationGradient(FLT *vectorToScale, FLT desiredMagnitude)
//{
// quatnormalize(vectorToScale, vectorToScale);
// quatscale(vectorToScale, vectorToScale, desiredMagnitude);
// return;
//}
void getNormalizedAndScaledRotationGradient(FLT *vectorToScale, FLT desiredMagnitude)
{
quatnormalize(vectorToScale, vectorToScale);
quatscale(vectorToScale, vectorToScale, desiredMagnitude);
//vectorToScale[3] = desiredMagnitude;
return;
}
static void WhereIsTheTrackedObjectAxisAngle(FLT *posOut, FLT *rotation, Point lhPoint)
{
posOut[0] = -lhPoint.x;
posOut[1] = -lhPoint.y;
posOut[2] = -lhPoint.z;
rotatearoundaxis(posOut, posOut, rotation, rotation[3]);
printf("{% 04.4f, % 04.4f, % 04.4f} ", posOut[0], posOut[1], posOut[2]);
}
static void RefineRotationEstimateAxisAngle(FLT *rotOut, Point lhPoint, FLT *initialEstimate, TrackedObject *obj)
{
int i = 0;
FLT lastMatchFitness = RotationEstimateFitnessAxisAngle(lhPoint, initialEstimate, obj);
quatcopy(rotOut, initialEstimate);
// The values below are somewhat magic, and definitely tunable
// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
// bigger values may be faster, especially when the initial guess is wildly off.
// The downside to a bigger starting guess is that if we've picked a good guess at the local minima
// if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
// That's fairly unlikely with the lighthouse problem, from expereince.
// The other downside is that if it's too big, we may have to spend a few iterations before it gets down
// to a size that doesn't jump us out of our minima.
// The terminal value of g represents how close we want to get to the local minima before we're "done"
// The change in value of g for each iteration is intentionally very close to 1.
// in fact, it probably could probably be 1 without any issue. The main place where g is decremented
// is in the block below when we've made a jump that results in a worse fitness than we're starting at.
// In those cases, we don't take the jump, and instead lower the value of g and try again.
for (FLT g = 0.1; g > 0.000000001 || i > 10000; g *= 0.99)
{
i++;
FLT point1[4];
quatcopy(point1, rotOut);
// let's get 3 iterations of gradient descent here.
FLT gradient1[4];
normalize3d(point1, point1);
getRotationGradientAxisAngle(gradient1, lhPoint, point1, obj, g/10000);
getNormalizedAndScaledRotationGradient(gradient1,g);
FLT point2[4];
quatadd(point2, gradient1, point1);
//quatnormalize(point2,point2);
normalize3d(point1, point1);
FLT gradient2[4];
getRotationGradientAxisAngle(gradient2, lhPoint, point2, obj, g/10000);
getNormalizedAndScaledRotationGradient(gradient2,g);
FLT point3[4];
quatadd(point3, gradient2, point2);
normalize3d(point1, point1);
//quatnormalize(point3,point3);
// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
// gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
// converging gradient descent makes. Instead of using the gradient as the best indicator of
// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
// following *that* vector. As it turns out, this works *amazingly* well.
FLT specialGradient[4];
quatsub(specialGradient,point3,point1);
// The second parameter to this function is very much a tunable parameter. Different values will result
// in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
// It's not clear what would be optimum here.
getNormalizedAndScaledRotationGradient(specialGradient,g/4);
FLT point4[4];
quatadd(point4, specialGradient, point3);
//quatnormalize(point4,point4);
normalize3d(point1, point1);
FLT newMatchFitness = RotationEstimateFitnessAxisAngle(lhPoint, point4, obj);
if (newMatchFitness > lastMatchFitness)
{
lastMatchFitness = newMatchFitness;
quatcopy(rotOut, point4);
//#ifdef TORI_DEBUG
//printf("+ %8.8f, (%8.8f, %8.8f, %8.8f) %f\n", newMatchFitness, point4[0], point4[1], point4[2], point4[3]);
//#endif
g *= 1.02;
}
else
{
//#ifdef TORI_DEBUG
//printf("- , %f\n", point4[3]);
//#endif
g *= 0.7;
}
if (i > 998)
{
//printf("Ri got big");
break;
}
}
printf(" Ri=%d ", i);
}
static void WhereIsTheTrackedObjectQuaternion(FLT *rotation, Point lhPoint)
{
FLT reverseRotation[4] = {rotation[0], rotation[1], rotation[2], -rotation[3]};
FLT objPoint[3] = {lhPoint.x, lhPoint.y, lhPoint.z};
//rotatearoundaxis(objPoint, objPoint, reverseRotation, reverseRotation[3]);
quatrotatevector(objPoint, rotation, objPoint);
printf("(%f, %f, %f)\n", objPoint[0], objPoint[1], objPoint[2]);
}
static void RefineRotationEstimateQuaternion(FLT *rotOut, Point lhPoint, FLT *initialEstimate, TrackedObject *obj)
{
int i = 0;
FLT lastMatchFitness = RotationEstimateFitnessQuaternion(lhPoint, initialEstimate, obj);
quatcopy(rotOut, initialEstimate);
// The values below are somewhat magic, and definitely tunable
// The initial vlue of g will represent the biggest step that the gradient descent can take at first.
// bigger values may be faster, especially when the initial guess is wildly off.
// The downside to a bigger starting guess is that if we've picked a good guess at the local minima
// if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
// That's fairly unlikely with the lighthouse problem, from expereince.
// The other downside is that if it's too big, we may have to spend a few iterations before it gets down
// to a size that doesn't jump us out of our minima.
// The terminal value of g represents how close we want to get to the local minima before we're "done"
// The change in value of g for each iteration is intentionally very close to 1.
// in fact, it probably could probably be 1 without any issue. The main place where g is decremented
// is in the block below when we've made a jump that results in a worse fitness than we're starting at.
// In those cases, we don't take the jump, and instead lower the value of g and try again.
for (FLT g = 0.1; g > 0.000000001; g *= 0.99)
{
i++;
FLT point1[4];
quatcopy(point1, rotOut);
// let's get 3 iterations of gradient descent here.
FLT gradient1[4];
//normalize3d(point1, point1);
getRotationGradientQuaternion(gradient1, lhPoint, point1, obj, g/10000);
getNormalizedAndScaledRotationGradient(gradient1,g);
FLT point2[4];
quatadd(point2, gradient1, point1);
quatnormalize(point2,point2);
//normalize3d(point1, point1);
FLT gradient2[4];
getRotationGradientQuaternion(gradient2, lhPoint, point2, obj, g/10000);
getNormalizedAndScaledRotationGradient(gradient2,g);
FLT point3[4];
quatadd(point3, gradient2, point2);
//normalize3d(point1, point1);
quatnormalize(point3,point3);
// remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
// Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
// gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
// converging gradient descent makes. Instead of using the gradient as the best indicator of
// the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
// following *that* vector. As it turns out, this works *amazingly* well.
FLT specialGradient[4];
quatsub(specialGradient,point3,point1);
// The second parameter to this function is very much a tunable parameter. Different values will result
// in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
// It's not clear what would be optimum here.
getNormalizedAndScaledRotationGradient(specialGradient,g/4);
FLT point4[4];
quatadd(point4, specialGradient, point3);
quatnormalize(point4,point4);
//normalize3d(point1, point1);
FLT newMatchFitness = RotationEstimateFitnessQuaternion(lhPoint, point4, obj);
if (newMatchFitness > lastMatchFitness)
{
lastMatchFitness = newMatchFitness;
quatcopy(rotOut, point4);
//#ifdef TORI_DEBUG
//printf("+ %8.8f, (%8.8f, %8.8f, %8.8f) %f\n", newMatchFitness, point4[0], point4[1], point4[2], point4[3]);
//#endif
g *= 1.02;
printf("+");
WhereIsTheTrackedObjectQuaternion(rotOut, lhPoint);
}
else
{
//#ifdef TORI_DEBUG
//printf("- , %f\n", point4[3]);
//#endif
g *= 0.7;
printf("-");
}
}
printf("Ri=%3d Fitness=%3f ", i, lastMatchFitness);
}
void SolveForRotation(FLT rotOut[4], TrackedObject *obj, Point lh)
{
// Step 1, create initial quaternion for guess.
// This should have the lighthouse directly facing the tracked object.
Point trackedObjRelativeToLh = { .x = -lh.x,.y = -lh.y,.z = -lh.z };
FLT theta = atan2(-lh.x, -lh.y);
FLT zAxis[4] = { 0, 0, 1 , theta-LINMATHPI/2};
FLT quat1[4];
quatfromaxisangle(quat1, zAxis, theta);
//quatfrom2vectors(0,0)
// not correcting for phi, but that's less important.
// Step 2, optimize the axis/ angle to match the data.
RefineRotationEstimateAxisAngle(rotOut, lh, zAxis, obj);
//// Step 2, optimize the quaternion to match the data.
//RefineRotationEstimateQuaternion(rotOut, lh, quat1, obj);
//WhereIsTheTrackedObjectQuaternion(rotOut, lh);
}
static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *obj, SurviveObject *so, char doLogOutput, int lh, int setLhCalibration)
{
ToriData *toriData = so->PoserData;
//printf("Solving for Lighthouse\n");
//printf("obj->numSensors = %d;\n", obj->numSensors);
//for (int i=0; i < obj->numSensors; i++)
//{
// printf("obj->sensor[%d].normal.x = %f;\n", i, obj->sensor[i].normal.x);
// printf("obj->sensor[%d].normal.y = %f;\n", i, obj->sensor[i].normal.y);
// printf("obj->sensor[%d].normal.z = %f;\n", i, obj->sensor[i].normal.z);
// printf("obj->sensor[%d].point.x = %f;\n", i, obj->sensor[i].point.x);
// printf("obj->sensor[%d].point.y = %f;\n", i, obj->sensor[i].point.y);
// printf("obj->sensor[%d].point.z = %f;\n", i, obj->sensor[i].point.z);
// printf("obj->sensor[%d].phi = %f;\n", i, obj->sensor[i].phi);
// printf("obj->sensor[%d].theta = %f;\n\n", i, obj->sensor[i].theta);
//}
PointsAndAngle pna[MAX_POINT_PAIRS];
volatile size_t sizeNeeded = sizeof(pna);
Point avgNorm = { 0 };
FLT smallestAngle = 20.0;
FLT largestAngle = 0;
size_t pnaCount = 0;
for (unsigned int i = 0; i < obj->numSensors; i++)
{
for (unsigned int j = 0; j < i; j++)
{
if (pnaCount < MAX_POINT_PAIRS)
{
pna[pnaCount].a = obj->sensor[i].point;
pna[pnaCount].b = obj->sensor[j].point;
pna[pnaCount].angle = angleBetweenSensors(&obj->sensor[i], &obj->sensor[j]);
//pna[pnaCount].angle = pythAngleBetweenSensors2(&obj->sensor[i], &obj->sensor[j]);
pna[pnaCount].tanAngle = FLT_TAN(pna[pnaCount].angle);
if (pna[pnaCount].angle < smallestAngle)
{
smallestAngle = pna[pnaCount].angle;
}
if (pna[pnaCount].angle > largestAngle)
{
largestAngle = pna[pnaCount].angle;
}
double pythAngle = sqrt(SQUARED(obj->sensor[i].phi - obj->sensor[j].phi) + SQUARED(obj->sensor[i].theta - obj->sensor[j].theta));
pna[pnaCount].rotation = GetRotationMatrixForTorus(pna[pnaCount].a, pna[pnaCount].b);
pna[pnaCount].invRotation = inverseM33(pna[pnaCount].rotation);
pna[pnaCount].ai = i;
pna[pnaCount].bi = j;
pnaCount++;
}
}
avgNorm.x += obj->sensor[i].normal.x;
avgNorm.y += obj->sensor[i].normal.y;
avgNorm.z += obj->sensor[i].normal.z;
}
avgNorm.x = avgNorm.x / obj->numSensors;
avgNorm.y = avgNorm.y / obj->numSensors;
avgNorm.z = avgNorm.z / obj->numSensors;
FLT avgNormF[3] = { avgNorm.x, avgNorm.y, avgNorm.z };
FILE *logFile = NULL;
if (doLogOutput)
{
logFile = fopen("pointcloud2.pcd", "wb");
writePcdHeader(logFile);
writeAxes(logFile);
}
// Point refinedEstimageGd = RefineEstimateUsingModifiedGradientDescent1(initialEstimate, pna, pnaCount, logFile);
// arbitrarily picking a value of 8 meters out to start from.
// intentionally picking the direction of the average normal vector of the sensors that see the lighthouse
// since this is least likely to pick the incorrect "mirror" point that would send us
// back into the search for the correct point (see "if (a1 > M_PI / 2)" below)
Point p1 = getNormalizedAndScaledVector(avgNorm, 8);
// if the last lighthouse position has been populated (extremely rare it would be 0)
if (toriData->lastLhPos[lh].x != 0)
{
p1.x = toriData->lastLhPos[lh].x;
p1.y = toriData->lastLhPos[lh].y;
p1.z = toriData->lastLhPos[lh].z;
}
Point refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p1, pna, pnaCount, logFile);
FLT pf1[3] = { refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z };
FLT a1 = anglebetween3d(pf1, avgNormF);
if (a1 > M_PI / 2)
{
Point p2 = { .x = -refinedEstimateGd.x,.y = -refinedEstimateGd.y,.z = -refinedEstimateGd.z };
refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p2, pna, pnaCount, logFile);
//FLT pf2[3] = { refinedEstimageGd2.x, refinedEstimageGd2.y, refinedEstimageGd2.z };
//FLT a2 = anglebetween3d(pf2, avgNormF);
}
FLT fitGd = getPointFitness(refinedEstimateGd, pna, pnaCount, 0);
FLT distance = FLT_SQRT(SQUARED(refinedEstimateGd.x) + SQUARED(refinedEstimateGd.y) + SQUARED(refinedEstimateGd.z));
printf(" la(% 04.4f) SnsrCnt(%2d) LhPos:(% 04.4f, % 04.4f, % 04.4f) Dist: % 08.8f ", largestAngle, (int)obj->numSensors, refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z, distance);
//printf("Distance is %f, Fitness is %f\n", distance, fitGd);
FLT rot[4]; // this is axis/ angle rotation, not a quaternion!
if (toriData->lastLhRotAxisAngle[lh][0] != 0)
{
rot[0] = toriData->lastLhRotAxisAngle[lh][0];
rot[1] = toriData->lastLhRotAxisAngle[lh][1];
rot[2] = toriData->lastLhRotAxisAngle[lh][2];
rot[3] = toriData->lastLhRotAxisAngle[lh][3];
}
SolveForRotation(rot, obj, refinedEstimateGd);
FLT objPos[3];
{
toriData->lastLhRotAxisAngle[lh][0] = rot[0];
toriData->lastLhRotAxisAngle[lh][1] = rot[1];
toriData->lastLhRotAxisAngle[lh][2] = rot[2];
toriData->lastLhRotAxisAngle[lh][3] = rot[3];
}
WhereIsTheTrackedObjectAxisAngle(objPos, rot, refinedEstimateGd);
FLT rotQuat[4];
quatfromaxisangle(rotQuat, rot, rot[3]);
//{
FLT tmpPos[3] = {refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z};
quatrotatevector(tmpPos, rotQuat, tmpPos);
//}
//static int foo = 0;
//if (0 == foo)
if (setLhCalibration)
{
//foo = 1;
if (so->ctx->bsd[lh].PositionSet)
{
printf("Warning: resetting base station calibration data");
}
FLT invRot[4];
quatgetreciprocal(invRot, rotQuat);
so->ctx->bsd[lh].Pose.Pos[0] = refinedEstimateGd.x;
so->ctx->bsd[lh].Pose.Pos[1] = refinedEstimateGd.y;
so->ctx->bsd[lh].Pose.Pos[2] = refinedEstimateGd.z;
so->ctx->bsd[lh].Pose.Rot[0] = invRot[0];
so->ctx->bsd[lh].Pose.Rot[1] = invRot[1];
so->ctx->bsd[lh].Pose.Rot[2] = invRot[2];
so->ctx->bsd[lh].Pose.Rot[3] = invRot[3];
so->ctx->bsd[lh].PositionSet = 1;
}
FLT wcPos[3]; // position in wold coordinates
quatrotatevector(wcPos, so->ctx->bsd[lh].Pose.Rot, objPos);
FLT newOrientation[4];
quatrotateabout(newOrientation, rotQuat, so->ctx->bsd[lh].Pose.Rot );
wcPos[0] += so->ctx->bsd[lh].Pose.Pos[0];
wcPos[1] += so->ctx->bsd[lh].Pose.Pos[1];
wcPos[2] += so->ctx->bsd[lh].Pose.Pos[2];
so->OutPose.Pos[0] = wcPos[0];
so->OutPose.Pos[1] = wcPos[1];
so->OutPose.Pos[2] = wcPos[2];
so->OutPose.Rot[0] = newOrientation[0];
so->OutPose.Rot[1] = newOrientation[1];
so->OutPose.Rot[2] = newOrientation[2];
so->OutPose.Rot[3] = newOrientation[3];
printf(" <% 04.4f, % 04.4f, % 04.4f > ", wcPos[0], wcPos[1], wcPos[2]);
if (logFile)
{
updateHeader(logFile);
fclose(logFile);
}
toriData->lastLhPos[lh].x = refinedEstimateGd.x;
toriData->lastLhPos[lh].y = refinedEstimateGd.y;
toriData->lastLhPos[lh].z = refinedEstimateGd.z;
return refinedEstimateGd;
}
static void QuickPose(SurviveObject *so, int lh)
{
ToriData * td = so->PoserData;
if (! so->ctx->bsd[lh].PositionSet)
{
// we don't know where we are! Augh!!!
return;
}
//for (int i=0; i < so->nr_locations; i++)
//{
// FLT x0=td->oldAngles[i][0][0][td->angleIndex[0][0]];
// FLT y0=td->oldAngles[i][1][0][td->angleIndex[0][1]];
// FLT x1=td->oldAngles[i][0][1][td->angleIndex[1][0]];
// FLT y1=td->oldAngles[i][1][1][td->angleIndex[1][1]];
// //printf("%2d: %8.8f, %8.8f %8.8f, %8.8f \n",
// // i,
// // x0,
// // y0,
// // x1,
// // y1
// // );
// printf("%2d: %8.8f, %8.8f \n",
// i,
// x0,
// y0
// );
//}
//printf("\n");
TrackedObject *to;
to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
{
int sensorCount = 0;
//// TODO: remove, for debug purposes only!
//FLT downQuat[4];
//FLT negZ[3] = { 0,0,-1 };
////quatfrom2vectors(downQuat, negZ, td->down);
//quatfrom2vectors(downQuat, td->down, negZ);
//// end TODO
for (int i = 0; i < so->nr_locations; i++)
{
int angleIndex0 = (td->angleIndex[lh][0] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
int angleIndex1 = (td->angleIndex[lh][1] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
if (td->oldAngles[i][0][lh][angleIndex0] != 0 && td->oldAngles[i][1][lh][angleIndex1] != 0)
{
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
// TODO: remove these two lines!!!
//quatrotatevector(norm, downQuat, norm);
//quatrotatevector(point, downQuat, point);
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
to->sensor[sensorCount].normal.z = norm[2];
to->sensor[sensorCount].point.x = point[0];
to->sensor[sensorCount].point.y = point[1];
to->sensor[sensorCount].point.z = point[2];
to->sensor[sensorCount].theta = td->oldAngles[i][0][lh][angleIndex0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = td->oldAngles[i][1][lh][angleIndex1] + LINMATHPI / 2; // lighthouse 0, angle 1 (vertical)
sensorCount++;
}
}
to->numSensors = sensorCount;
if (sensorCount > 4)
{
FLT pos[3], quat[4];
SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
printf("!\n");
}
}
free(to);
}
int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
{
PoserType pt = poserData->pt;
SurviveContext * ctx = so->ctx;
ToriData * td = so->PoserData;
if (!td)
{
so->PoserData = td = malloc(sizeof(ToriData));
memset(td, 0, sizeof(ToriData));
}
switch( pt )
{
case POSERDATA_IMU:
{
PoserDataIMU * tmpImu = (PoserDataIMU*)poserData;
// store off data we can use for figuring out what direction is down when doing calibration.
//TODO: looks like the data mask isn't getting set correctly.
//if (tmpImu->datamask & 1) // accelerometer data is present
{
td->down[0] = td->down[0] * 0.98 + 0.02 * tmpImu->accel[0];
td->down[1] = td->down[1] * 0.98 + 0.02 * tmpImu->accel[1];
td->down[2] = td->down[2] * 0.98 + 0.02 * tmpImu->accel[2];
}
//printf( "IMU:%s (%f %f %f) (%f %f %f)\n", so->codename, tmpImu->accel[0], tmpImu->accel[1], tmpImu->accel[2], tmpImu->gyro[0], tmpImu->gyro[1], tmpImu->gyro[2] );
//printf( "Down: (%f %f %f)\n", td->down[0], td->down[1], td->down[2] );
break;
}
case POSERDATA_LIGHT:
{
PoserDataLight * l = (PoserDataLight*)poserData;
if (l->lh >= NUM_LIGHTHOUSES || l->lh < 0)
{
// should never happen. Famous last words...
break;
}
int axis = l->acode & 0x1;
//printf( "LIG:%s %d @ %f rad, %f s (AC %d) (TC %d)\n", so->codename, l->sensor_id, l->angle, l->length, l->acode, l->timecode );
if ((td->lastAxis[l->lh] != (l->acode & 0x1)) )
{
if (0 == l->lh && axis) // only once per full cycle...
{
static unsigned int counter = 1;
counter++;
// let's just do this occasionally for now...
if (counter % 4 == 0)
QuickPose(so, 0);
}
// axis changed, time to increment the circular buffer index.
td->angleIndex[l->lh][axis]++;
td->angleIndex[l->lh][axis] = td->angleIndex[l->lh][axis] % OLD_ANGLES_BUFF_LEN;
// and clear out the data.
for (int i=0; i < SENSORS_PER_OBJECT; i++)
{
td->oldAngles[i][axis][l->lh][td->angleIndex[l->lh][axis]] = 0;
}
td->lastAxis[l->lh] = axis;
}
td->oldAngles[l->sensor_id][axis][l->lh][td->angleIndex[l->lh][axis]] = l->angle;
break;
}
case POSERDATA_FULL_SCENE:
{
TrackedObject *to;
PoserDataFullScene * fs = (PoserDataFullScene*)poserData;
to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
// if we rotate the internal reference frame of of the tracked object from having -z being arbitrary
// to being the down direction as defined by the accelerometer, then when we have come up
// with world coordinate system, it will have Z oriented correctly.
// let's get the quaternion that represents this rotation.
//FLT downQuat[4];
FLT negZ[3] = { 0,0,1 };
//quatfrom2vectors(downQuat, negZ, td->down);
//quatfrom2vectors(downQuat, td->down, negZ);
{
int sensorCount = 0;
for (int i = 0; i < so->nr_locations; i++)
{
if (fs->lengths[i][0][0] != -1 && fs->lengths[i][0][1] != -1) //lh 0
{
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
//quatrotatevector(norm, downQuat, norm);
//quatrotatevector(point, downQuat, point);
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
to->sensor[sensorCount].normal.z = norm[2];
to->sensor[sensorCount].point.x = point[0];
to->sensor[sensorCount].point.y = point[1];
to->sensor[sensorCount].point.z = point[2];
to->sensor[sensorCount].theta = fs->angles[i][0][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = fs->angles[i][0][1] + LINMATHPI / 2; // lighthouse 0, angle 1 (vertical)
sensorCount++;
}
}
to->numSensors = sensorCount;
FLT pos[3], quat[4];
SolveForLighthouse(pos, quat, to, so, 0, 0, 1);
}
{
int sensorCount = 0;
int lh = 1;
for (int i = 0; i < so->nr_locations; i++)
{
if (fs->lengths[i][lh][0] != -1 && fs->lengths[i][lh][1] != -1)
{
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
//quatrotatevector(norm, downQuat, norm);
//quatrotatevector(point, downQuat, point);
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
to->sensor[sensorCount].normal.z = norm[2];
to->sensor[sensorCount].point.x = point[0];
to->sensor[sensorCount].point.y = point[1];
to->sensor[sensorCount].point.z = point[2];
to->sensor[sensorCount].theta = fs->angles[i][lh][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
to->sensor[sensorCount].phi = fs->angles[i][lh][1] + LINMATHPI / 2; // lighthosue 0, angle 1 (vertical)
sensorCount++;
}
}
to->numSensors = sensorCount;
FLT pos[3], quat[4];
SolveForLighthouse(pos, quat, to, so, 0, 1, 1);
}
free(to);
//printf( "Full scene data.\n" );
break;
}
case POSERDATA_DISASSOCIATE:
{
free( so->PoserData );
so->PoserData = NULL;
//printf( "Need to disassociate.\n" );
break;
}
}
return 0;
}
REGISTER_LINKTIME( PoserTurveyTori );
|