aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichael Turvey <mwturvey@users.noreply.github.com>2017-05-31 10:12:24 -0700
committerGitHub <noreply@github.com>2017-05-31 10:12:24 -0700
commit4d795f16f188513f96d167164131268c8cc66b4b (patch)
tree29e04a5990895ccdf7b7a6141ead2c6af0fd718a
parentb61178ee2038e6d08ce237d71f51ea26908b1161 (diff)
parent5c6d30471e789b975a3eceab05d8e68dbaec0533 (diff)
downloadlibsurvive-4d795f16f188513f96d167164131268c8cc66b4b.tar.gz
libsurvive-4d795f16f188513f96d167164131268c8cc66b4b.tar.bz2
Merge pull request #77 from mwturvey/ToriiCleanup
Modest updates to Tori
-rw-r--r--redist/linmath.c39
-rw-r--r--redist/linmath.h2
-rw-r--r--src/poser_turveytori.c126
3 files changed, 137 insertions, 30 deletions
diff --git a/redist/linmath.c b/redist/linmath.c
index b3896ff..5d51708 100644
--- a/redist/linmath.c
+++ b/redist/linmath.c
@@ -104,6 +104,45 @@ void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle)
outvec3[2] = w*(u*x + v*y + w*z)*(1-c) + z*c + (-v*x + u*y)*s;
}
+void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest)
+{
+ FLT v0[3];
+ FLT v1[3];
+ normalize3d(v0, src);
+ normalize3d(v1, dest);
+
+ FLT d = dot3d(v0, v1);// v0.dotProduct(v1);
+
+ // If dot == 1, vectors are the same
+ // If dot == -1, vectors are opposite
+ if (FLT_FABS(d - 1) < DEFAULT_EPSILON)
+ {
+ axis[0] = 0;
+ axis[1] = 1;
+ axis[2] = 0;
+ *angle = 0;
+ return;
+ }
+ else if (FLT_FABS(d + 1) < DEFAULT_EPSILON)
+ {
+ axis[0] = 0;
+ axis[1] = 1;
+ axis[2] = 0;
+ *angle = LINMATHPI;
+ return;
+ }
+
+ FLT v0Len = magnitude3d(v0);
+ FLT v1Len = magnitude3d(v1);
+
+ *angle = FLT_ACOS(d / (v0Len * v1Len));
+
+ //cross3d(c, v0, v1);
+ cross3d(axis, v1, v0);
+
+}
+
+
/////////////////////////////////////QUATERNIONS//////////////////////////////////////////
//Originally from Mercury (Copyright (C) 2009 by Joshua Allen, Charles Lohr, Adam Lowman)
//Under the mit/X11 license.
diff --git a/redist/linmath.h b/redist/linmath.h
index 6f0bf60..8d6cf05 100644
--- a/redist/linmath.h
+++ b/redist/linmath.h
@@ -71,6 +71,8 @@ FLT magnitude3d(const FLT * a );
FLT anglebetween3d( FLT * a, FLT * b );
void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle);
+void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest);
+
//Quaternion things...
void quatsetnone( FLT * q );
diff --git a/src/poser_turveytori.c b/src/poser_turveytori.c
index 481a499..86b763b 100644
--- a/src/poser_turveytori.c
+++ b/src/poser_turveytori.c
@@ -1253,21 +1253,28 @@ static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *ob
p1.z = toriData->lastLhPos[lh].z;
}
+ // refinedEstimateGd is the estimate for the location of the lighthouse in the tracked
+ // object's local coordinate system.
Point refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p1, pna, pnaCount, logFile);
FLT pf1[3] = { refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z };
+ // here we're checking the direction of the found point against the average direction of the
+ // normal direction of the sensors that saw the light pulse.
+ // This is because there are two possible points of convergence for the tori. One is the correct
+ // location of the lighthouse. The other is in almost exactly the opposite direction.
+ // The easiest way to determine that we've converged correctly is to see if the sensors' normal
+ // are pointing in the direction of the point we've converged on.
+ // if we have converged on the wrong point, we can try to converge one more time, using a starting estimate of
+ // the point we converged on rotated to be directly opposite of its current position. Such a point
+ // is guaranteed, in practice, to converge on the other location.
+ // Note: in practice, we pretty much always converge on the correct point in the first place,
+ // but this check just makes extra sure.
FLT a1 = anglebetween3d(pf1, avgNormF);
-
if (a1 > M_PI / 2)
{
Point p2 = { .x = -refinedEstimateGd.x,.y = -refinedEstimateGd.y,.z = -refinedEstimateGd.z };
refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p2, pna, pnaCount, logFile);
-
- //FLT pf2[3] = { refinedEstimageGd2.x, refinedEstimageGd2.y, refinedEstimageGd2.z };
-
- //FLT a2 = anglebetween3d(pf2, avgNormF);
-
}
FLT fitGd = getPointFitness(refinedEstimateGd, pna, pnaCount, 0);
@@ -1278,6 +1285,9 @@ static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *ob
FLT rot[4]; // this is axis/ angle rotation, not a quaternion!
+ // if we've already guessed at the rotation of the lighthouse,
+ // then let's use that as a starting guess, because it's probably
+ // going to make convergence happen much faster.
if (toriData->lastLhRotAxisAngle[lh][0] != 0)
{
rot[0] = toriData->lastLhRotAxisAngle[lh][0];
@@ -1286,7 +1296,12 @@ static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *ob
rot[3] = toriData->lastLhRotAxisAngle[lh][3];
}
-
+ // Given the relative position of the lighthouse
+ // to the tracked object, in the tracked object's coordinate
+ // system, find the rotation of the lighthouse, again in the
+ // tracked object's coordinate system.
+ // TODO: I believe this could be radically improved
+ // using an SVD.
SolveForRotation(rot, obj, refinedEstimateGd);
FLT objPos[3];
@@ -1305,9 +1320,9 @@ static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *ob
quatfromaxisangle(rotQuat, rot, rot[3]);
//{
- FLT tmpPos[3] = {refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z};
+ //FLT tmpPos[3] = {refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z};
- quatrotatevector(tmpPos, rotQuat, tmpPos);
+ //quatrotatevector(tmpPos, rotQuat, tmpPos);
//}
//static int foo = 0;
@@ -1334,18 +1349,42 @@ static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *ob
so->ctx->bsd[lh].PositionSet = 1;
}
+
FLT wcPos[3]; // position in wold coordinates
+ // Take the position of the tracked object from the lighthouse's
+ // frame of reference, and then rotate it in the reverse
+ // direction of the orientation of the lighthouse
+ // in the world reference freame.
+ // Then, change the offset based on the position of the lighthouse
+ // in the world reference frame.
+ // The result is the position of the tracked object
+ // in the world reference frame.
quatrotatevector(wcPos, so->ctx->bsd[lh].Pose.Rot, objPos);
-
- FLT newOrientation[4];
- //quatrotateabout(newOrientation, rotQuat, so->ctx->bsd[lh].Pose.Rot);
- quatrotateabout(newOrientation, so->ctx->bsd[lh].Pose.Rot, rotQuat);
-
wcPos[0] += so->ctx->bsd[lh].Pose.Pos[0];
wcPos[1] += so->ctx->bsd[lh].Pose.Pos[1];
wcPos[2] += so->ctx->bsd[lh].Pose.Pos[2];
+ FLT newOrientation[4];
+ //quatrotateabout(newOrientation, rotQuat, so->ctx->bsd[lh].Pose.Rot); // turns the wrong way
+ //quatrotateabout(newOrientation, so->ctx->bsd[lh].Pose.Rot, rotQuat); // turns the wrong way
+
+ FLT invRot[4];
+ quatgetreciprocal(invRot, rotQuat);
+ //quatrotateabout(newOrientation, invRot, so->ctx->bsd[lh].Pose.Rot); // turns correctly, rotations not aligned
+ //quatrotateabout(newOrientation, so->ctx->bsd[lh].Pose.Rot, invRot); // turns correctly, rotations not aligned
+
+ FLT invPoseRot[4];
+ quatgetreciprocal(invPoseRot, so->ctx->bsd[lh].Pose.Rot);
+
+ //quatrotateabout(newOrientation, rotQuat, invPoseRot); // turns the wrong way, rotations not aligned
+ //quatrotateabout(newOrientation, invPoseRot, rotQuat); // turns the wrong way, rotations not aligned
+
+ //FLT invRot[4];
+ //quatgetreciprocal(invRot, rotQuat);
+ quatrotateabout(newOrientation, invRot, invPoseRot); // turns correctly, rotations aligned <-- This seems to be the best.
+ //quatrotateabout(newOrientation, invPoseRot, invRot); // turns correctly, rotations aligned, (x & y flipped?)
+
so->OutPose.Pos[0] = wcPos[0];
so->OutPose.Pos[1] = wcPos[1];
so->OutPose.Pos[2] = wcPos[2];
@@ -1471,22 +1510,22 @@ static void QuickPose(SurviveObject *so, int lh)
// it basically ignores all the logic to find the most reliable data points
// and just grabs a sample and uses it.
- static int countdown = 5;
-
- if (countdown > 0 && so->ctx->objs[0] == so)
- {
- SolveForLighthouse(pos, quat, to, so, 0, lh, 1);
- countdown--;
- }
- else
- {
- SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
- }
+ //static int countdown = 5;
+
+ //if (countdown > 0 && so->ctx->objs[0] == so)
+ //{
+ // SolveForLighthouse(pos, quat, to, so, 0, lh, 1);
+ // countdown--;
+ //}
+ //else
+ //{
+ // SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
+ //}
- //SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
+ SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
printf("!\n");
}
@@ -1600,6 +1639,11 @@ int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
//quatfrom2vectors(downQuat, negZ, td->down);
quatfrom2vectors(downQuat, td->down, negZ);
+ FLT angle;
+ FLT axis[3];
+ angleaxisfrom2vect(&angle, &axis, td->down, negZ);
+ //angleaxisfrom2vect(&angle, &axis, negZ, td->down);
+
{
int sensorCount = 0;
@@ -1611,8 +1655,12 @@ int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
- quatrotatevector(norm, downQuat, norm);
- quatrotatevector(point, downQuat, point);
+ //quatrotatevector(norm, downQuat, norm);
+ //quatrotatevector(point, downQuat, point);
+
+ //rotatearoundaxis(norm, norm, axis, angle);
+ //rotatearoundaxis(point, point, axis, angle);
+
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
@@ -1643,8 +1691,12 @@ int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
- quatrotatevector(norm, downQuat, norm);
- quatrotatevector(point, downQuat, point);
+ //quatrotatevector(norm, downQuat, norm);
+ //quatrotatevector(point, downQuat, point);
+
+ //rotatearoundaxis(norm, norm, axis, angle);
+ //rotatearoundaxis(point, point, axis, angle);
+
to->sensor[sensorCount].normal.x = norm[0];
to->sensor[sensorCount].normal.y = norm[1];
@@ -1665,6 +1717,20 @@ int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
SolveForLighthouse(pos, quat, to, so, 0, 1, 1);
}
+
+ // This code block rotates the lighthouse fixes to accound for any time the tracked object
+ // is oriented other than +z = up
+ // This REALLY DOESN'T WORK!!!
+ //{
+ // for (int lh = 0; lh < 2; lh++)
+ // {
+ // quatrotatevector(&(so->ctx->bsd[lh].Pose.Pos[0]), downQuat, &(so->ctx->bsd[lh].Pose.Pos[0]));
+ // //quatrotateabout(&(so->ctx->bsd[lh].Pose.Rot[0]), &(so->ctx->bsd[lh].Pose.Rot[0]), downQuat);
+ // quatrotateabout(&(so->ctx->bsd[lh].Pose.Rot[0]), downQuat, &(so->ctx->bsd[lh].Pose.Rot[0]));
+ // }
+ //}
+
+
free(to);
//printf( "Full scene data.\n" );
break;