1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
#include "survive_imu.h"
#include "linmath.h"
#include "math.h"
#include "survive_internal.h"
#include <memory.h>
#include <survive_imu.h>
// Mahoney is due to https://hal.archives-ouvertes.fr/hal-00488376/document
// See also http://www.olliw.eu/2013/imu-data-fusing/#chapter41 and
// http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
static void mahony_ahrs(SurviveIMUTracker *tracker, LinmathVec3d _gyro, LinmathVec3d _accel) {
LinmathVec3d gyro;
memcpy(gyro, _gyro, 3 * sizeof(FLT));
LinmathVec3d accel;
memcpy(accel, _accel, 3 * sizeof(FLT));
const FLT sample_f = 240;
const FLT prop_gain = .5;
const FLT int_gain = 0;
FLT *q = tracker->pose.Rot;
FLT mag_accel = magnitude3d(accel);
if (mag_accel != 0.0) {
scale3d(accel, accel, 1. / mag_accel);
// Equiv of q^-1 * G
LinmathVec3d v = {q[1] * q[3] - q[0] * q[2], q[0] * q[1] + q[2] * q[3], q[0] * q[0] - 0.5 + q[3] * q[3]};
LinmathVec3d error;
cross3d(error, accel, v);
if (int_gain > 0.0f) {
LinmathVec3d fb_correction;
scale3d(fb_correction, error, int_gain * 2. / sample_f);
add3d(tracker->integralFB, tracker->integralFB, fb_correction);
add3d(gyro, gyro, tracker->integralFB);
}
scale3d(error, error, prop_gain * 2.);
add3d(gyro, gyro, error);
}
scale3d(gyro, gyro, 0.5 / sample_f);
LinmathQuat correction = {
(-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]), (q[0] * gyro[0] + q[2] * gyro[2] - q[3] * gyro[1]),
(q[0] * gyro[1] - q[1] * gyro[2] + q[3] * gyro[0]), (q[0] * gyro[2] + q[1] * gyro[1] - q[2] * gyro[0])};
quatadd(q, q, correction);
quatnormalize(q, q);
}
static inline uint32_t tick_difference(uint32_t most_recent, uint32_t least_recent) {
uint32_t diff = 0;
if (most_recent > least_recent) {
diff = most_recent - least_recent;
} else {
diff = least_recent - most_recent;
}
if (diff > 0xFFFFFFFF / 2)
return 0x7FFFFFFF / 2 - diff;
return diff;
}
void survive_imu_tracker_set_pose(SurviveIMUTracker *tracker, uint32_t timecode, SurvivePose *pose) {
tracker->pose = *pose;
for (int i = 0; i < 3; i++) {
tracker->current_velocity[i] = 0;
}
//(pose->Pos[i] - tracker->lastGT.Pos[i]) / tick_difference(timecode, tracker->lastGTTime) * 48000000.;
tracker->lastGTTime = timecode;
tracker->lastGT = *pose;
}
static const int imu_calibration_iterations = 100;
static void RotateAccel(LinmathVec3d rAcc, const SurvivePose *pose, const LinmathVec3d accel) {
quatrotatevector(rAcc, pose->Rot, accel);
LinmathVec3d G = {0, 0, -1};
add3d(rAcc, rAcc, G);
scale3d(rAcc, rAcc, 9.8066);
FLT m = magnitude3d(rAcc);
}
static void iterate_position(SurviveIMUTracker *tracker, double time_diff, const PoserDataIMU *pIMU, FLT *out) {
const SurvivePose *pose = &tracker->pose;
const FLT *vel = tracker->current_velocity;
for (int i = 0; i < 3; i++)
out[i] = pose->Pos[i];
FLT acc_mul = time_diff * time_diff / 2;
LinmathVec3d acc;
scale3d(acc, pIMU->accel, tracker->accel_scale_bias);
LinmathVec3d rAcc = {0};
RotateAccel(rAcc, pose, acc);
scale3d(rAcc, rAcc, acc_mul);
for (int i = 0; i < 3; i++) {
out[i] += time_diff * vel[i] + rAcc[i];
}
}
static void iterate_velocity(LinmathVec3d result, SurviveIMUTracker *tracker, double time_diff, PoserDataIMU *pIMU) {
const SurvivePose *pose = &tracker->pose;
const FLT *vel = tracker->current_velocity;
scale3d(result, vel, 1.);
LinmathVec3d acc;
scale3d(acc, pIMU->accel, tracker->accel_scale_bias);
LinmathVec3d rAcc = {0};
RotateAccel(rAcc, pose, acc);
scale3d(rAcc, rAcc, time_diff);
add3d(result, result, rAcc);
}
void survive_imu_tracker_integrate(SurviveObject *so, SurviveIMUTracker *tracker, PoserDataIMU *data) {
if (!tracker->is_initialized) {
tracker->pose.Rot[0] = 1.;
if (tracker->last_data.datamask == imu_calibration_iterations) {
tracker->last_data = *data;
const FLT up[3] = {0, 0, 1};
quatfrom2vectors(tracker->pose.Rot, tracker->updir, up);
tracker->accel_scale_bias = 1. / magnitude3d(tracker->updir);
tracker->is_initialized = true;
return;
}
tracker->last_data.datamask++;
tracker->updir[0] += data->accel[0] / imu_calibration_iterations;
tracker->updir[1] += data->accel[1] / imu_calibration_iterations;
tracker->updir[2] += data->accel[2] / imu_calibration_iterations;
return;
}
for (int i = 0; i < 3; i++) {
tracker->updir[i] = data->accel[i] * .10 + tracker->updir[i] * .90;
}
mahony_ahrs(tracker, data->gyro, data->accel);
FLT time_diff = tick_difference(data->timecode, tracker->last_data.timecode) / (FLT)so->timebase_hz;
if (tick_difference(data->timecode, tracker->lastGTTime) < 3200000 * 3) {
FLT next[3];
iterate_position(tracker, time_diff, data, next);
LinmathVec3d v_next;
iterate_velocity(v_next, tracker, time_diff, data);
scale3d(tracker->current_velocity, v_next, 1);
scale3d(tracker->pose.Pos, next, 1);
}
FLT var_meters = .000001;
FLT var_quat = .05;
const FLT Q[7] = {var_meters, var_meters, var_meters, var_quat, var_quat, var_quat, var_quat};
// Note that this implementation is somewhat truncated. Instead of modeling velocity and velocities
// covariance with position explicitly, we just square the variance for the position indexes. This
// gives more or less the same calculation without having to do matrix multiplication.
for (int i = 0; i < 3; i++)
tracker->P[i] = tracker->P[i] * tracker->P[i] + Q[i];
for (int i = 3; i < 7; i++)
tracker->P[i] += Q[i];
tracker->last_data = *data;
}
void survive_imu_tracker_integrate_observation(SurviveObject *so, uint32_t timecode, SurviveIMUTracker *tracker,
SurvivePose *pose, const FLT *R) {
if (!tracker->is_initialized) {
tracker->pose = *pose;
return;
}
// Kalman filter assuming:
// F -> Identity
// H -> Identity
// Q / R / P -> Diagonal matrices; just treat them as such. This assumption might need some checking but it
// makes the # of calculations needed much smaller so we may be willing to tolerate some approximation here
FLT *xhat = &tracker->pose.Pos[0];
FLT *zk = &pose->Pos[0];
FLT yk[7];
for (int i = 0; i < 7; i++)
yk[i] = zk[i] - xhat[i];
FLT sk[7];
for (int i = 0; i < 7; i++)
sk[i] = R[i] + tracker->P[i];
FLT K[7];
for (int i = 0; i < 7; i++)
K[i] = tracker->P[i] / sk[i];
for (int i = 0; i < 7; i++)
xhat[i] += K[i] * yk[i];
for (int i = 0; i < 7; i++)
tracker->P[i] *= (1. - K[i]);
FLT time_diff = tick_difference(timecode, tracker->lastGTTime) / (FLT)so->timebase_hz;
for (int i = 0; i < 3; i++)
tracker->current_velocity[i] = 0.5 * (tracker->pose.Pos[i] - tracker->lastGT.Pos[i]) / time_diff;
tracker->lastGTTime = timecode;
tracker->lastGT = tracker->pose;
}
|