1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
#include "survive_imu.h"
#include "linmath.h"
#include "survive_internal.h"
#include <survive_imu.h>
void survive_imu_tracker_set_pose(SurviveIMUTracker *tracker, uint32_t timecode, SurvivePose *pose) {
tracker->pose = *pose;
for (int i = 0; i < 3; i++)
tracker->current_velocity[i] =
(pose->Pos[i] - tracker->lastGT.Pos[i]) / (timecode - tracker->lastGTTime) * 48000000.;
tracker->lastGTTime = timecode;
tracker->lastGT = *pose;
}
static const int imu_calibration_iterations = 100;
static void RotateAccel(LinmathVec3d rAcc, const SurvivePose *pose, const LinmathVec3d accel) {
quatrotatevector(rAcc, pose->Rot, accel);
LinmathVec3d G = {0, 0, -1};
add3d(rAcc, rAcc, G);
scale3d(rAcc, rAcc, 9.8);
}
static SurvivePose iterate_position(const SurvivePose *pose, const LinmathVec3d vel, double time_diff,
const PoserDataIMU *pIMU) {
SurvivePose result = *pose;
FLT acc_mul = time_diff * time_diff / 2;
LinmathVec3d rAcc = {0};
RotateAccel(rAcc, pose, pIMU->accel);
//fprintf(stderr, "r %f %f %f %f\n", pIMU->accel[0], pIMU->accel[1], pIMU->accel[2], quatmagnitude(pIMU->accel));
//fprintf(stderr, "i %f %f %f %f\n", rAcc[0], rAcc[1], rAcc[2], quatmagnitude(rAcc));
scale3d(rAcc, rAcc, acc_mul);
LinmathVec3d gyro;
for (int i = 0; i < 3; i++) {
result.Pos[i] += time_diff * vel[i] + rAcc[i];
gyro[i] = time_diff / 2 * pIMU->gyro[i];
}
LinmathEulerAngle curr, next;
quattoeuler(curr, pose->Rot);
add3d(next, curr, gyro);
quatfromeuler(result.Rot, next);
return result;
}
static void iterate_velocity(LinmathVec3d result, const SurvivePose *pose, const LinmathVec3d vel, double time_diff,
PoserDataIMU *pIMU) {
scale3d(result, vel, 1.);
LinmathVec3d rAcc = {0};
RotateAccel(rAcc, pose, pIMU->accel);
scale3d(rAcc, rAcc, time_diff);
add3d(result, result, rAcc);
}
void survive_imu_tracker_integrate(SurviveObject *so, SurviveIMUTracker *tracker, PoserDataIMU *data) {
if (tracker->last_data.timecode == 0) {
if (tracker->last_data.datamask == imu_calibration_iterations) {
tracker->last_data = *data;
tracker->pose.Rot[0] = 1.;
const FLT up[3] = {0, 0, 1};
quatfrom2vectors(tracker->pose.Rot, tracker->updir, up);
return;
}
tracker->last_data.datamask++;
tracker->updir[0] += data->accel[0] / imu_calibration_iterations;
tracker->updir[1] += data->accel[1] / imu_calibration_iterations;
tracker->updir[2] += data->accel[2] / imu_calibration_iterations;
return;
}
for (int i = 0; i < 3; i++) {
tracker->updir[i] = data->accel[i] * .10 + tracker->updir[i] * .90;
}
const FLT up[3] = {0, 0, 1};
LinmathQuat upRot, wouldbeUp;
LinmathVec3d rup;
quatrotatevector(rup, tracker->pose.Rot, up);
quatfrom2vectors(upRot, rup, data->accel);
quatrotateabout(wouldbeUp, upRot, tracker->pose.Rot);
quatslerp(tracker->pose.Rot, tracker->pose.Rot, wouldbeUp, .1);
FLT pose_up[3] = {0, 0, 1};
quatrotatevector(pose_up, tracker->pose.Rot, tracker->updir);
FLT time_diff = (data->timecode - tracker->last_data.timecode) / (FLT)so->timebase_hz;
SurvivePose t_next = iterate_position(&tracker->pose, tracker->current_velocity, time_diff, data);
LinmathVec3d v_next;
iterate_velocity(v_next, &tracker->pose, tracker->current_velocity, time_diff, data);
tracker->pose = t_next;
//fprintf(stderr, "%f %f %f\n", tracker->current_velocity[0], tracker->current_velocity[1],
//tracker->current_velocity[2]);
scale3d(tracker->current_velocity, v_next, 1);
tracker->last_data = *data;
FLT tmp[3];
ApplyPoseToPoint(tmp, &tracker->pose, up);
printf("[%f, %f, %f] [%f, %f, %f]\n", tracker->pose.Pos[0], tracker->pose.Pos[1], tracker->pose.Pos[2], tmp[0],
tmp[1], tmp[2]);
}
|