1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
//Copyright 2016 <>< C. N. Lohr, FULLY Under MIT/x11 License.
//All MIT/x11 Licensed Code in this file may be relicensed freely under the GPL or LGPL licenses.
#include <survive.h>
#include "survive_internal.h"
#include <stdio.h>
#include <stdlib.h>
#include <jsmn.h>
#include <string.h>
#include <zlib.h>
static int jsoneq(const char *json, jsmntok_t *tok, const char *s) {
if (tok->type == JSMN_STRING && (int) strlen(s) == tok->end - tok->start &&
strncmp(json + tok->start, s, tok->end - tok->start) == 0) {
return 0;
}
return -1;
}
static void survivefault( struct SurviveContext * ctx, const char * fault )
{
fprintf( stderr, "Error: %s\n", fault );
exit( -1 );
}
static void survivenote( struct SurviveContext * ctx, const char * fault )
{
fprintf( stderr, "Info: %s\n", fault );
}
static int ParsePoints( struct SurviveContext * ctx, struct SurviveObject * so, char * ct0conf, FLT ** floats_out, jsmntok_t * t, int i )
{
int k;
int pts = t[i+1].size;
jsmntok_t * tk;
so->nr_locations = 0;
*floats_out = malloc( sizeof( **floats_out ) * 32 * 3 );
for( k = 0; k < pts; k++ )
{
tk = &t[i+2+k*4];
FLT vals[3];
int m;
for( m = 0; m < 3; m++ )
{
char ctt[128];
tk++;
int elemlen = tk->end - tk->start;
if( tk->type != 4 || elemlen > sizeof( ctt )-1 )
{
SV_ERROR( "Parse error in JSON\n" );
return 1;
}
memcpy( ctt, ct0conf + tk->start, elemlen );
ctt[elemlen] = 0;
FLT f = atof( ctt );
int id = so->nr_locations*3+m;
(*floats_out)[id] = f;
}
so->nr_locations++;
}
return 0;
}
static int LoadConfig( struct SurviveContext * ctx, struct SurviveObject * so, int devno, int iface, int extra_magic )
{
char * ct0conf = 0;
int len = survive_get_config( &ct0conf, ctx, devno, iface, extra_magic );
#if 0
char fname[100];
sprintf( fname, "%s_config.json", so->codename );
FILE * f = fopen( fname, "w" );
fwrite( ct0conf, strlen(ct0conf), 1, f );
fclose( f );
#endif
if( len > 0 )
{
//From JSMN example.
jsmn_parser p;
jsmntok_t t[4096];
jsmn_init(&p);
int i;
int r = jsmn_parse(&p, ct0conf, len, t, sizeof(t)/sizeof(t[0]));
if (r < 0) {
SV_INFO("Failed to parse JSON in HMD configuration: %d\n", r);
return -1;
}
if (r < 1 || t[0].type != JSMN_OBJECT) {
SV_INFO("Object expected in HMD configuration\n");
return -2;
}
for (i = 1; i < r; i++) {
jsmntok_t * tk = &t[i];
char ctxo[100];
int ilen = tk->end - tk->start;
if( ilen > 99 ) ilen = 99;
memcpy(ctxo, ct0conf + tk->start, ilen);
ctxo[ilen] = 0;
// printf( "%d / %d / %d / %d %s %d\n", tk->type, tk->start, tk->end, tk->size, ctxo, jsoneq(ct0conf, &t[i], "modelPoints") );
// printf( "%.*s\n", ilen, ct0conf + tk->start );
if (jsoneq(ct0conf, tk, "modelPoints") == 0) {
if( ParsePoints( ctx, so, ct0conf, &so->sensor_locations, t, i ) )
{
break;
}
}
if (jsoneq(ct0conf, tk, "modelNormals") == 0) {
if( ParsePoints( ctx, so, ct0conf, &so->sensor_normals, t, i ) )
{
break;
}
}
}
}
else
{
//TODO: Cleanup any remaining USB stuff.
return 1;
}
return 0;
}
struct SurviveContext * survive_init()
{
int r = 0;
struct SurviveContext * ctx = calloc( 1, sizeof( struct SurviveContext ) );
ctx->faultfunction = survivefault;
ctx->notefunction = survivenote;
ctx->lightproc = survive_default_light_process;
ctx->imuproc = survive_default_imu_process;
ctx->angleproc = survive_default_angle_process;
ctx->headset.ctx = ctx;
memcpy( ctx->headset.codename, "HMD", 4 );
ctx->watchman[0].ctx = ctx;
memcpy( ctx->watchman[0].codename, "WM0", 4 );
ctx->watchman[1].ctx = ctx;
memcpy( ctx->watchman[1].codename, "WM1", 4 );
//USB must happen last.
if( r = survive_usb_init( ctx ) )
{
//TODO: Cleanup any libUSB stuff sitting around.
goto fail_gracefully;
}
//Next, pull out the config stuff.
if( LoadConfig( ctx, &ctx->headset, 1, 0, 0 ) ) goto fail_gracefully;
if( LoadConfig( ctx, &ctx->watchman[0], 2, 0, 1 ) ) { SV_INFO( "Watchman 0 config issue." ); }
if( LoadConfig( ctx, &ctx->watchman[1], 3, 0, 1 ) ) { SV_INFO( "Watchman 1 config issue." ); }
ctx->headset.timebase_hz = ctx->watchman[0].timebase_hz = ctx->watchman[1].timebase_hz = 48000000;
ctx->headset.pulsedist_max_ticks = ctx->watchman[0].pulsedist_max_ticks = ctx->watchman[1].pulsedist_max_ticks = 500000;
ctx->headset.pulselength_min_sync = ctx->watchman[0].pulselength_min_sync = ctx->watchman[1].pulselength_min_sync = 2200;
ctx->headset.pulse_in_clear_time = ctx->watchman[0].pulse_in_clear_time = ctx->watchman[1].pulse_in_clear_time = 35000;
ctx->headset.pulse_max_for_sweep = ctx->watchman[0].pulse_max_for_sweep = ctx->watchman[1].pulse_max_for_sweep = 1800;
ctx->headset.pulse_synctime_offset = ctx->watchman[0].pulse_synctime_offset = ctx->watchman[1].pulse_synctime_offset = 20000;
ctx->headset.pulse_synctime_slack = ctx->watchman[0].pulse_synctime_slack = ctx->watchman[1].pulse_synctime_slack = 5000;
ctx->headset.timecenter_ticks = ctx->headset.timebase_hz / 240;
ctx->watchman[0].timecenter_ticks = ctx->watchman[0].timebase_hz / 240;
ctx->watchman[1].timecenter_ticks = ctx->watchman[1].timebase_hz / 240;
/*
int i;
int locs = ctx->headset.nr_locations;
printf( "Locs: %d\n", locs );
if (ctx->headset.sensor_locations )
{
printf( "POSITIONS:\n" );
for( i = 0; i < locs*3; i+=3 )
{
printf( "%f %f %f\n", ctx->headset.sensor_locations[i+0], ctx->headset.sensor_locations[i+1], ctx->headset.sensor_locations[i+2] );
}
}
if( ctx->headset.sensor_normals )
{
printf( "NORMALS:\n" );
for( i = 0; i < locs*3; i+=3 )
{
printf( "%f %f %f\n", ctx->headset.sensor_normals[i+0], ctx->headset.sensor_normals[i+1], ctx->headset.sensor_normals[i+2] );
}
}
*/
return ctx;
fail_gracefully:
survive_usb_close( ctx );
free( ctx );
return 0;
}
void survive_install_info_fn( struct SurviveContext * ctx, text_feedback_func fbp )
{
if( fbp )
ctx->notefunction = fbp;
else
ctx->notefunction = survivenote;
}
void survive_install_error_fn( struct SurviveContext * ctx, text_feedback_func fbp )
{
if( fbp )
ctx->faultfunction = fbp;
else
ctx->faultfunction = survivefault;
}
void survive_install_light_fn( struct SurviveContext * ctx, light_process_func fbp )
{
if( fbp )
ctx->lightproc = fbp;
else
ctx->lightproc = survive_default_light_process;
}
void survive_install_imu_fn( struct SurviveContext * ctx, imu_process_func fbp )
{
if( fbp )
ctx->imuproc = fbp;
else
ctx->imuproc = survive_default_imu_process;
}
void survive_install_angle_fn( struct SurviveContext * ctx, angle_process_func fbp )
{
if( fbp )
ctx->angleproc = fbp;
else
ctx->angleproc = survive_default_angle_process;
}
void survive_close( struct SurviveContext * ctx )
{
survive_usb_close( ctx );
}
int survive_poll( struct SurviveContext * ctx )
{
survive_usb_poll( ctx );
}
int survive_simple_inflate( struct SurviveContext * ctx, const char * input, int inlen, char * output, int outlen )
{
z_stream zs; //Zlib stream. May only be used by configuration at beginning and by USB thread periodically.
memset( &zs, 0, sizeof( zs ) );
inflateInit( &zs ); ///Consider checking error
//XXX: Todo: If we find that this is not useful past the beginning (nix this here and move into the configuration getter)
zs.avail_in = inlen;
zs.next_in = (z_const Bytef *)input;
zs.avail_out = outlen;
zs.next_out = output;
if( inflate( &zs, Z_FINISH) != Z_STREAM_END )
{
SV_INFO("survive_simple_inflate could not inflate." );
return -1;
}
int len = zs.total_out;
inflateEnd( &zs );
return len;
}
struct SurviveObject * survive_get_so_by_name( struct SurviveContext * ctx, const char * name )
{
if( strcmp( name, "HMD" ) == 0 ) return &ctx->headset;
if( strcmp( name, "WM0" ) == 0 ) return &ctx->watchman[0];
if( strcmp( name, "WM1" ) == 0 ) return &ctx->watchman[1];
return 0;
}
|