aboutsummaryrefslogtreecommitdiff
path: root/redist/linmath.c
blob: f4c3635d03926f00e99bdd966a946f96daead05c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
// Copyright 2013,2016 <>< C. N. Lohr.  This file licensed under the terms of the MIT license.

#include "linmath.h"
#include <float.h>
#include <math.h>
#include <string.h>

inline void cross3d(FLT *out, const FLT *a, const FLT *b) {
	out[0] = a[1] * b[2] - a[2] * b[1];
	out[1] = a[2] * b[0] - a[0] * b[2];
	out[2] = a[0] * b[1] - a[1] * b[0];
}

inline void sub3d(FLT *out, const FLT *a, const FLT *b) {
	out[0] = a[0] - b[0];
	out[1] = a[1] - b[1];
	out[2] = a[2] - b[2];
}

inline void add3d(FLT *out, const FLT *a, const FLT *b) {
	out[0] = a[0] + b[0];
	out[1] = a[1] + b[1];
	out[2] = a[2] + b[2];
}

inline void scale3d(FLT *out, const FLT *a, FLT scalar) {
	out[0] = a[0] * scalar;
	out[1] = a[1] * scalar;
	out[2] = a[2] * scalar;
}

inline void normalize3d(FLT *out, const FLT *in) {
	FLT r = ((FLT)1.) / FLT_SQRT(in[0] * in[0] + in[1] * in[1] + in[2] * in[2]);
	out[0] = in[0] * r;
	out[1] = in[1] * r;
	out[2] = in[2] * r;
}

FLT dot3d(const FLT *a, const FLT *b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }

int compare3d(const FLT *a, const FLT *b, FLT epsilon) {
	if (!a || !b)
		return 0;
	if (a[2] - b[2] > epsilon)
		return 1;
	if (b[2] - a[2] > epsilon)
		return -1;
	if (a[1] - b[1] > epsilon)
		return 1;
	if (b[1] - a[1] > epsilon)
		return -1;
	if (a[0] - b[0] > epsilon)
		return 1;
	if (b[0] - a[0] > epsilon)
		return -1;
	return 0;
}

inline void copy3d(FLT *out, const FLT *in) {
	out[0] = in[0];
	out[1] = in[1];
	out[2] = in[2];
}

FLT magnitude3d(const FLT *a) { return FLT_SQRT(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); }
FLT dist3d(const FLT *a, const FLT *b) {
	LinmathPoint3d tmp;
	sub3d(tmp, a, b);
	return magnitude3d(tmp);
}

FLT anglebetween3d(FLT *a, FLT *b) {
	FLT an[3];
	FLT bn[3];
	normalize3d(an, a);
	normalize3d(bn, b);
	FLT dot = dot3d(an, bn);
	if (dot < -0.9999999)
		return LINMATHPI;
	if (dot > 0.9999999)
		return 0;
	return FLT_ACOS(dot);
}

// algorithm found here: http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/
inline void rotatearoundaxis(FLT *outvec3, FLT *invec3, FLT *axis, FLT angle) {
	// TODO: this really should be external.
	normalize3d(axis, axis);

	FLT s = FLT_SIN(angle);
	FLT c = FLT_COS(angle);

	FLT u = axis[0];
	FLT v = axis[1];
	FLT w = axis[2];

	FLT x = invec3[0];
	FLT y = invec3[1];
	FLT z = invec3[2];

	outvec3[0] = u * (u * x + v * y + w * z) * (1 - c) + x * c + (-w * y + v * z) * s;
	outvec3[1] = v * (u * x + v * y + w * z) * (1 - c) + y * c + (w * x - u * z) * s;
	outvec3[2] = w * (u * x + v * y + w * z) * (1 - c) + z * c + (-v * x + u * y) * s;
}

inline void angleaxisfrom2vect(FLT *angle, FLT *axis, FLT *src, FLT *dest) {
	FLT v0[3];
	FLT v1[3];
	normalize3d(v0, src);
	normalize3d(v1, dest);

	FLT d = dot3d(v0, v1); // v0.dotProduct(v1);

	// If dot == 1, vectors are the same
	// If dot == -1, vectors are opposite
	if (FLT_FABS(d - 1) < DEFAULT_EPSILON) {
		axis[0] = 0;
		axis[1] = 1;
		axis[2] = 0;
		*angle = 0;
		return;
	} else if (FLT_FABS(d + 1) < DEFAULT_EPSILON) {
		axis[0] = 0;
		axis[1] = 1;
		axis[2] = 0;
		*angle = LINMATHPI;
		return;
	}

	FLT v0Len = magnitude3d(v0);
	FLT v1Len = magnitude3d(v1);

	*angle = FLT_ACOS(d / (v0Len * v1Len));

	// cross3d(c, v0, v1);
	cross3d(axis, v1, v0);
}

inline void axisanglefromquat(FLT *angle, FLT *axis, FLT *q) {
	// this way might be fine, too.
	// FLT dist = FLT_SQRT((q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
	//
	//*angle = 2 * FLT_ATAN2(dist, q[0]);

	// axis[0] = q[1] / dist;
	// axis[1] = q[2] / dist;
	// axis[2] = q[3] / dist;

	// Good mathematical foundation for this algorithm found here:
	// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

	FLT tmp[4] = {q[0], q[1], q[2], q[3]};

	quatnormalize(tmp, q);

	if (FLT_FABS(q[0] - 1) < FLT_EPSILON) {
		// we have a degenerate case where we're rotating approx. 0 degrees
		*angle = 0;
		axis[0] = 1;
		axis[1] = 0;
		axis[2] = 0;
		return;
	}

	axis[0] = tmp[1] / sqrt(1 - (tmp[0] * tmp[0]));
	axis[1] = tmp[2] / sqrt(1 - (tmp[0] * tmp[0]));
	axis[2] = tmp[3] / sqrt(1 - (tmp[0] * tmp[0]));

	*angle = 2 * FLT_ACOS(tmp[0]);
}

/////////////////////////////////////QUATERNIONS//////////////////////////////////////////
// Originally from Mercury (Copyright (C) 2009 by Joshua Allen, Charles Lohr, Adam Lowman)
// Under the mit/X11 license.

inline void quatset(LinmathQuat q, FLT w, FLT x, FLT y, FLT z) {
	q[0] = w;
	q[1] = x;
	q[2] = y;
	q[3] = z;
}

inline void quatsetnone(LinmathQuat q) {
	q[0] = 1;
	q[1] = 0;
	q[2] = 0;
	q[3] = 0;
}

inline void quatcopy(LinmathQuat qout, const LinmathQuat qin) {
	qout[0] = qin[0];
	qout[1] = qin[1];
	qout[2] = qin[2];
	qout[3] = qin[3];
}

inline void quatfromeuler(LinmathQuat q, const LinmathEulerAngle euler) {
	FLT X = euler[0] / 2.0f; // roll
	FLT Y = euler[1] / 2.0f; // pitch
	FLT Z = euler[2] / 2.0f; // yaw

	FLT cx = FLT_COS(X);
	FLT sx = FLT_SIN(X);
	FLT cy = FLT_COS(Y);
	FLT sy = FLT_SIN(Y);
	FLT cz = FLT_COS(Z);
	FLT sz = FLT_SIN(Z);

	// Correct according to
	// http://en.wikipedia.org/wiki/Conversion_between_MQuaternions_and_Euler_angles
	q[0] = cx * cy * cz + sx * sy * sz; // q1
	q[1] = sx * cy * cz - cx * sy * sz; // q2
	q[2] = cx * sy * cz + sx * cy * sz; // q3
	q[3] = cx * cy * sz - sx * sy * cz; // q4
	quatnormalize(q, q);
}

inline void quattoeuler(LinmathEulerAngle euler, const LinmathQuat q) {
	// According to http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles (Oct 26, 2009)
	euler[0] = FLT_ATAN2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2]));
	euler[1] = FLT_ASIN(2 * (q[0] * q[2] - q[3] * q[1]));
	euler[2] = FLT_ATAN2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3]));
}

inline void quatfromaxisangle(LinmathQuat q, const FLT *axis, FLT radians) {
	FLT v[3];
	normalize3d(v, axis);

	FLT sn = FLT_SIN(radians / 2.0f);
	q[0] = FLT_COS(radians / 2.0f);
	q[1] = sn * v[0];
	q[2] = sn * v[1];
	q[3] = sn * v[2];

	quatnormalize(q, q);
}

FLT quatmagnitude(const LinmathQuat q) {
	return FLT_SQRT((q[0] * q[0]) + (q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
}

FLT quatinvsqmagnitude(const LinmathQuat q) {
	return ((FLT)1.) / FLT_SQRT((q[0] * q[0]) + (q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3]));
}

inline void quatnormalize(LinmathQuat qout, const LinmathQuat qin) {
	FLT imag = quatinvsqmagnitude(qin);
	quatscale(qout, qin, imag);
}

inline void quattomatrix(FLT *matrix44, const LinmathQuat qin) {
	FLT q[4];
	quatnormalize(q, qin);

	// Reduced calulation for speed
	FLT xx = 2 * q[1] * q[1];
	FLT xy = 2 * q[1] * q[2];
	FLT xz = 2 * q[1] * q[3];
	FLT xw = 2 * q[1] * q[0];

	FLT yy = 2 * q[2] * q[2];
	FLT yz = 2 * q[2] * q[3];
	FLT yw = 2 * q[2] * q[0];

	FLT zz = 2 * q[3] * q[3];
	FLT zw = 2 * q[3] * q[0];

	// opengl major
	matrix44[0] = 1 - yy - zz;
	matrix44[1] = xy - zw;
	matrix44[2] = xz + yw;
	matrix44[3] = 0;

	matrix44[4] = xy + zw;
	matrix44[5] = 1 - xx - zz;
	matrix44[6] = yz - xw;
	matrix44[7] = 0;

	matrix44[8] = xz - yw;
	matrix44[9] = yz + xw;
	matrix44[10] = 1 - xx - yy;
	matrix44[11] = 0;

	matrix44[12] = 0;
	matrix44[13] = 0;
	matrix44[14] = 0;
	matrix44[15] = 1;
}

inline void quatfrommatrix33(FLT *q, const FLT *m) {
	FLT m00 = m[0], m01 = m[1], m02 = m[2], m10 = m[3], m11 = m[4], m12 = m[5], m20 = m[6], m21 = m[7], m22 = m[8];

	FLT tr = m00 + m11 + m22;

	if (tr > 0) {
		FLT S = sqrt(tr + 1.0) * 2; // S=4*qw
		q[0] = 0.25 * S;
		q[1] = (m21 - m12) / S;
		q[2] = (m02 - m20) / S;
		q[3] = (m10 - m01) / S;
	} else if ((m00 > m11) & (m00 > m22)) {
		FLT S = sqrt(1.0 + m00 - m11 - m22) * 2; // S=4*q[1]
		q[0] = (m21 - m12) / S;
		q[1] = 0.25 * S;
		q[2] = (m01 + m10) / S;
		q[3] = (m02 + m20) / S;
	} else if (m11 > m22) {
		FLT S = sqrt(1.0 + m11 - m00 - m22) * 2; // S=4*q[2]
		q[0] = (m02 - m20) / S;
		q[1] = (m01 + m10) / S;
		q[2] = 0.25 * S;
		q[3] = (m12 + m21) / S;
	} else {
		FLT S = sqrt(1.0 + m22 - m00 - m11) * 2; // S=4*q[3]
		q[0] = (m10 - m01) / S;
		q[1] = (m02 + m20) / S;
		q[2] = (m12 + m21) / S;
		q[3] = 0.25 * S;
	}
}

inline void quatfrommatrix(LinmathQuat q, const FLT *matrix44) {
	// Algorithm from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
	FLT tr = matrix44[0] + matrix44[5] + matrix44[10];

	if (tr > 0) {
		FLT S = FLT_SQRT(tr + 1.0) * 2.; // S=4*qw
		q[0] = 0.25f * S;
		q[1] = (matrix44[9] - matrix44[6]) / S;
		q[2] = (matrix44[2] - matrix44[8]) / S;
		q[3] = (matrix44[4] - matrix44[1]) / S;
	} else if ((matrix44[0] > matrix44[5]) && (matrix44[0] > matrix44[10])) {
		FLT S = FLT_SQRT(1.0 + matrix44[0] - matrix44[5] - matrix44[10]) * 2.; // S=4*qx
		q[0] = (matrix44[9] - matrix44[6]) / S;
		q[1] = 0.25f * S;
		q[2] = (matrix44[1] + matrix44[4]) / S;
		q[3] = (matrix44[2] + matrix44[8]) / S;
	} else if (matrix44[5] > matrix44[10]) {
		FLT S = FLT_SQRT(1.0 + matrix44[5] - matrix44[0] - matrix44[10]) * 2.; // S=4*qy
		q[0] = (matrix44[2] - matrix44[8]) / S;
		q[1] = (matrix44[1] + matrix44[4]) / S;
		q[2] = 0.25f * S;
		q[3] = (matrix44[6] + matrix44[9]) / S;
	} else {
		FLT S = FLT_SQRT(1.0 + matrix44[10] - matrix44[0] - matrix44[5]) * 2.; // S=4*qz
		q[0] = (matrix44[4] - matrix44[1]) / S;
		q[1] = (matrix44[2] + matrix44[8]) / S;
		q[2] = (matrix44[6] + matrix44[9]) / S;
		q[3] = 0.25 * S;
	}
}

// Algorithm from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/
inline void quattomatrix33(FLT *matrix33, const LinmathQuat qin) {
	FLT q[4];
	quatnormalize(q, qin);

	// Reduced calulation for speed
	FLT xx = 2 * q[1] * q[1];
	FLT xy = 2 * q[1] * q[2];
	FLT xz = 2 * q[1] * q[3];
	FLT xw = 2 * q[1] * q[0];

	FLT yy = 2 * q[2] * q[2];
	FLT yz = 2 * q[2] * q[3];
	FLT yw = 2 * q[2] * q[0];

	FLT zz = 2 * q[3] * q[3];
	FLT zw = 2 * q[3] * q[0];

	// opengl major
	matrix33[0] = 1 - yy - zz;
	matrix33[1] = xy + zw;
	matrix33[2] = xz - yw;

	matrix33[3] = xy - zw;
	matrix33[4] = 1 - xx - zz;
	matrix33[5] = yz + xw;

	matrix33[6] = xz + yw;
	matrix33[7] = yz - xw;
	matrix33[8] = 1 - xx - yy;
}

inline void quatgetconjugate(LinmathQuat qout, const LinmathQuat qin) {
	qout[0] = qin[0];
	qout[1] = -qin[1];
	qout[2] = -qin[2];
	qout[3] = -qin[3];
}

inline void quatgetreciprocal(LinmathQuat qout, const LinmathQuat qin) {
	FLT m = quatinvsqmagnitude(qin);
	quatgetconjugate(qout, qin);
	quatscale(qout, qout, m);
}

inline void quatsub(LinmathQuat qout, const FLT *a, const FLT *b) {
	qout[0] = a[0] - b[0];
	qout[1] = a[1] - b[1];
	qout[2] = a[2] - b[2];
	qout[3] = a[3] - b[3];
}

inline void quatadd(LinmathQuat qout, const FLT *a, const FLT *b) {
	qout[0] = a[0] + b[0];
	qout[1] = a[1] + b[1];
	qout[2] = a[2] + b[2];
	qout[3] = a[3] + b[3];
}

inline void quatrotateabout(LinmathQuat qout, const LinmathQuat q1, const LinmathQuat q2) {
	// NOTE: Does not normalize
	qout[0] = (q1[0] * q2[0]) - (q1[1] * q2[1]) - (q1[2] * q2[2]) - (q1[3] * q2[3]);
	qout[1] = (q1[0] * q2[1]) + (q1[1] * q2[0]) + (q1[2] * q2[3]) - (q1[3] * q2[2]);
	qout[2] = (q1[0] * q2[2]) - (q1[1] * q2[3]) + (q1[2] * q2[0]) + (q1[3] * q2[1]);
	qout[3] = (q1[0] * q2[3]) + (q1[1] * q2[2]) - (q1[2] * q2[1]) + (q1[3] * q2[0]);
}

inline void quatscale(LinmathQuat qout, const LinmathQuat qin, FLT s) {
	qout[0] = qin[0] * s;
	qout[1] = qin[1] * s;
	qout[2] = qin[2] * s;
	qout[3] = qin[3] * s;
}

FLT quatinnerproduct(const LinmathQuat qa, const LinmathQuat qb) {
	return (qa[0] * qb[0]) + (qa[1] * qb[1]) + (qa[2] * qb[2]) + (qa[3] * qb[3]);
}

inline void quatouterproduct(FLT *outvec3, LinmathQuat qa, LinmathQuat qb) {
	outvec3[0] = (qa[0] * qb[1]) - (qa[1] * qb[0]) - (qa[2] * qb[3]) + (qa[3] * qb[2]);
	outvec3[1] = (qa[0] * qb[2]) + (qa[1] * qb[3]) - (qa[2] * qb[0]) - (qa[3] * qb[1]);
	outvec3[2] = (qa[0] * qb[3]) - (qa[1] * qb[2]) + (qa[2] * qb[1]) - (qa[3] * qb[0]);
}

inline void quatevenproduct(LinmathQuat q, LinmathQuat qa, LinmathQuat qb) {
	q[0] = (qa[0] * qb[0]) - (qa[1] * qb[1]) - (qa[2] * qb[2]) - (qa[3] * qb[3]);
	q[1] = (qa[0] * qb[1]) + (qa[1] * qb[0]);
	q[2] = (qa[0] * qb[2]) + (qa[2] * qb[0]);
	q[3] = (qa[0] * qb[3]) + (qa[3] * qb[0]);
}

inline void quatoddproduct(FLT *outvec3, LinmathQuat qa, LinmathQuat qb) {
	outvec3[0] = (qa[2] * qb[3]) - (qa[3] * qb[2]);
	outvec3[1] = (qa[3] * qb[1]) - (qa[1] * qb[3]);
	outvec3[2] = (qa[1] * qb[2]) - (qa[2] * qb[1]);
}

inline void quatslerp(LinmathQuat q, const LinmathQuat qa, const LinmathQuat qb, FLT t) {
	FLT an[4];
	FLT bn[4];
	quatnormalize(an, qa);
	quatnormalize(bn, qb);
	FLT cosTheta = quatinnerproduct(an, bn);
	FLT sinTheta;

	// Careful: If cosTheta is exactly one, or even if it's infinitesimally over, it'll
	// cause SQRT to produce not a number, and screw everything up.
	if (1 - (cosTheta * cosTheta) <= 0)
		sinTheta = 0;
	else
		sinTheta = FLT_SQRT(1 - (cosTheta * cosTheta));

	FLT Theta = FLT_ACOS(cosTheta); // Theta is half the angle between the 2 MQuaternions

	if (FLT_FABS(Theta) < DEFAULT_EPSILON)
		quatcopy(q, qa);
	else if (FLT_FABS(sinTheta) < DEFAULT_EPSILON) {
		quatadd(q, qa, qb);
		quatscale(q, q, 0.5);
	} else {
		FLT aside[4];
		FLT bside[4];
		quatscale(bside, qb, FLT_SIN(t * Theta));
		quatscale(aside, qa, FLT_SIN((1 - t) * Theta));
		quatadd(q, aside, bside);
		quatscale(q, q, ((FLT)1.) / sinTheta);
	}
}

inline void quatrotatevector(FLT *vec3out, const LinmathQuat quat, const FLT *vec3in) {
	// See: http://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/

	FLT tmp[3];
	FLT tmp2[3];
	cross3d(tmp, &quat[1], vec3in);
	tmp[0] += vec3in[0] * quat[0];
	tmp[1] += vec3in[1] * quat[0];
	tmp[2] += vec3in[2] * quat[0];
	cross3d(tmp2, &quat[1], tmp);
	vec3out[0] = vec3in[0] + 2 * tmp2[0];
	vec3out[1] = vec3in[1] + 2 * tmp2[1];
	vec3out[2] = vec3in[2] + 2 * tmp2[2];
}

// Matrix Stuff

Matrix3x3 inverseM33(const Matrix3x3 mat) {
	Matrix3x3 newMat;
	for (int a = 0; a < 3; a++) {
		for (int b = 0; b < 3; b++) {
			newMat.val[a][b] = mat.val[a][b];
		}
	}

	for (int i = 0; i < 3; i++) {
		for (int j = i + 1; j < 3; j++) {
			FLT tmp = newMat.val[i][j];
			newMat.val[i][j] = newMat.val[j][i];
			newMat.val[j][i] = tmp;
		}
	}

	return newMat;
}

inline void rotation_between_vecs_to_m3(Matrix3x3 *m, const FLT v1[3], const FLT v2[3]) {
	FLT q[4];

	quatfrom2vectors(q, v1, v2);

	quattomatrix33(&(m->val[0][0]), q);
}

inline void rotate_vec(FLT *out, const FLT *in, Matrix3x3 rot) {
	out[0] = rot.val[0][0] * in[0] + rot.val[1][0] * in[1] + rot.val[2][0] * in[2];
	out[1] = rot.val[0][1] * in[0] + rot.val[1][1] * in[1] + rot.val[2][1] * in[2];
	out[2] = rot.val[0][2] * in[0] + rot.val[1][2] * in[1] + rot.val[2][2] * in[2];

	return;
}

// This function based on code from Object-oriented Graphics Rendering Engine
// Copyright(c) 2000 - 2012 Torus Knot Software Ltd
// under MIT license
// http://www.ogre3d.org/docs/api/1.9/_ogre_vector3_8h_source.html

/** Gets the shortest arc quaternion to rotate this vector to the destination
vector.
@remarks
If you call this with a dest vector that is close to the inverse
of this vector, we will rotate 180 degrees around a generated axis if
since in this case ANY axis of rotation is valid.
*/
inline void quatfrom2vectors(FLT *q, const FLT *src, const FLT *dest) {
	// Based on Stan Melax's article in Game Programming Gems

	// Copy, since cannot modify local
	FLT v0[3];
	FLT v1[3];
	normalize3d(v0, src);
	normalize3d(v1, dest);

	FLT d = dot3d(v0, v1); // v0.dotProduct(v1);
	// If dot == 1, vectors are the same
	if (d >= 1.0f) {
		quatsetnone(q);
		return;
	}
	if (d < (1e-6f - 1.0f)) {
		// Generate an axis
		FLT unitX[3] = {1, 0, 0};
		FLT unitY[3] = {0, 1, 0};

		FLT axis[3];
		cross3d(axis, unitX, src);												  // pick an angle
		if ((axis[0] < 1.0e-35f) && (axis[1] < 1.0e-35f) && (axis[2] < 1.0e-35f)) // pick another if colinear
		{
			cross3d(axis, unitY, src);
		}
		normalize3d(axis, axis);
		quatfromaxisangle(q, axis, LINMATHPI);
	} else {
		FLT s = FLT_SQRT((1 + d) * 2);
		FLT invs = 1 / s;

		FLT c[3];
		cross3d(c, v0, v1);

		q[0] = s * 0.5f;
		q[1] = c[0] * invs;
		q[2] = c[1] * invs;
		q[3] = c[2] * invs;

		quatnormalize(q, q);
	}
}

inline void matrix44copy(FLT *mout, const FLT *minm) { memcpy(mout, minm, sizeof(FLT) * 16); }

inline void matrix44transpose(FLT *mout, const FLT *minm) {
	mout[0] = minm[0];
	mout[1] = minm[4];
	mout[2] = minm[8];
	mout[3] = minm[12];

	mout[4] = minm[1];
	mout[5] = minm[5];
	mout[6] = minm[9];
	mout[7] = minm[13];

	mout[8] = minm[2];
	mout[9] = minm[6];
	mout[10] = minm[10];
	mout[11] = minm[14];

	mout[12] = minm[3];
	mout[13] = minm[7];
	mout[14] = minm[11];
	mout[15] = minm[15];
}

inline void ApplyPoseToPoint(LinmathPoint3d pout, const LinmathPose *pose, const LinmathPoint3d pin) {
	quatrotatevector(pout, pose->Rot, pin);
	add3d(pout, pout, pose->Pos);
}

inline void ApplyPoseToPose(LinmathPose *pout, const LinmathPose *lhs_pose, const LinmathPose *rhs_pose) {
	ApplyPoseToPoint(pout->Pos, lhs_pose, rhs_pose->Pos);
	quatrotateabout(pout->Rot, lhs_pose->Rot, rhs_pose->Rot);
}

inline void InvertPose(LinmathPose *poseout, const LinmathPose *pose) {
	quatgetreciprocal(poseout->Rot, pose->Rot);

	quatrotatevector(poseout->Pos, poseout->Rot, pose->Pos);
	scale3d(poseout->Pos, poseout->Pos, -1);
}

inline void PoseToMatrix(FLT *matrix44, const LinmathPose *pose_in) {
	quattomatrix(matrix44, pose_in->Rot);

	/*
	matrix44[12] = pose_in->Pos[0];
	matrix44[13] = pose_in->Pos[1];
	matrix44[14] = pose_in->Pos[2];
	*/
	matrix44[3] = pose_in->Pos[0];
	matrix44[7] = pose_in->Pos[1];
	matrix44[11] = pose_in->Pos[2];
}

LinmathQuat LinmathQuat_Identity = {1.0};
LinmathPose LinmathPose_Identity = {.Rot = {1.0}};