1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
//
// main.c
// AffineSolve
//
// Created by user on 3/2/17.
// Copyright © 2017 user. All rights reserved.
//
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#define LH_ID 0
#define NUM_HMD 32
float hmd_pos[NUM_HMD][3];
void ReadHmdPoints()
{
int i;
FILE *fin = fopen("HMD_points.csv","r");
if (fin==NULL) {
printf("ERROR: could not open HMD_points.csv for reading\n");
exit(1);
}
for (i=0; i<NUM_HMD; i++) {
fscanf(fin, "%f %f %f", &(hmd_pos[i][0]), &(hmd_pos[i][1]), &(hmd_pos[i][2]));
}
fclose(fin);
}
#define MAX_POINTS 128
#define _ABS(a) ( (a)<=0 ? -(a) : (a) )
#define _SIGN(a) ( (a)<=0 ? -1.0f : 1.0f )
#define RANDF ( (float)rand() / (float)RAND_MAX )
#define STEP_SIZE_ROT 1.0
#define STEP_SIZE_POS 1.0
#define FALLOFF 0.99999
#define NITER 2000000
#define TOO_SMALL 0.0001
#define ORTHOG_PENALTY 1.0
#define PRINT_MAT(A,M,N) { \
int m,n; \
printf(#A "\n"); \
for (m=0; m<M; m++) { \
for (n=0; n<N; n++) { \
printf("%f\t", A[m][n]); \
} \
printf("\n"); \
} \
}
void AffineSolve(
float T[4][4], // OUTPUT: transform
float O[MAX_POINTS][4], // INPUT: points, offsets
float N[MAX_POINTS][3], // INPUT: plane normals
float D[MAX_POINTS], // INPUT: plane offsets
int nPoints, int nIter,
float stepSizeRot, float stepSizePos, float falloff, int constrain)
{
int i,j,k,iter;
//T[3][3] = 1.0f;
printf("iter x y z error\n");
float gradDot = 1.0;
float prevGradDot = 1.0;
float de_dT[3][4]; // the gradient
float conj[3][4]; // the conjugate
float errorSq=0.0;
for (iter=0; iter<nIter; iter++)
{
//----------------------------------
// Calculate the gradient direction
//----------------------------------
errorSq = 0.0;
memset(de_dT, 0, 3*4*sizeof(float));
for (i=0; i<nPoints; i++)
{
// What is the plane deviation error
float Ei = -D[i];
for (j=0; j<3; j++) {
float Tj_oi = 0.0f;
for (k=0; k<4; k++) {
Tj_oi += T[j][k] * O[i][k];
}
Ei += N[i][j] * Tj_oi;
}
// printf("E[%d] %f\n", i, Ei);
// Figure out contribution to the error
for (j=0; j<3; j++) {
for (k=0; k<4; k++) {
de_dT[j][k] += N[i][j] * O[i][k] * Ei;
}
}
errorSq += Ei*Ei;
}
printf("%d %f %f %f %f\n", iter, T[0][3], T[1][3], T[2][3], sqrt(errorSq));
// Constrain the gradient (such that dot products are zero)
if (constrain)
{
float T0T1 = 0.0, T1T2 = 0.0, T2T0 = 0.0;
for (k=0; k<3; k++) {
T0T1 += T[0][k] * T[1][k];
T1T2 += T[1][k] * T[2][k];
T2T0 += T[2][k] * T[0][k];
}
// printf("T0T1 %f T1T2 %f T2T0 %f\n", T0T1, T1T2, T2T0);
for (k=0; k<3; k++) {
de_dT[0][k] += ORTHOG_PENALTY * 2.0 * T0T1 * T[1][k];
de_dT[0][k] += ORTHOG_PENALTY * 2.0 * T2T0 * T[2][k];
de_dT[1][k] += ORTHOG_PENALTY * 2.0 * T1T2 * T[2][k];
de_dT[1][k] += ORTHOG_PENALTY * 2.0 * T0T1 * T[0][k];
de_dT[2][k] += ORTHOG_PENALTY * 2.0 * T1T2 * T[1][k];
de_dT[2][k] += ORTHOG_PENALTY * 2.0 * T2T0 * T[0][k];
}
}
// Calculate the gradient dot product
// (used by conjugate gradient method)
prevGradDot = gradDot;
gradDot = 0.0;
for (j=0; j<3; j++) {
for (k=0; k<4; k++) {
gradDot += de_dT[j][k] * de_dT[j][k];
}
}
// printf("Iter %d error %f gradDot %f prevGradDot %f\n", iter, sqrt(errorSq), gradDot, prevGradDot);
//----------------------------------
// Calculate the conjugate direction
//----------------------------------
// if (iter==0) {
// First iteration, just use the gradient
for (j=0; j<3; j++) {
for (k=0; k<4; k++) {
conj[j][k] = -de_dT[j][k];
}
}
/* } else {
// Calculate "beta" for Fletcher Reeves method
float beta = gradDot / prevGradDot;
//printf("gradDot %f prevGradDot %f beta %f\n", gradDot, prevGradDot, beta);
// Update the conjugate
for (j=0; j<3; j++) {
for (k=0; k<4; k++) {
conj[j][k] = beta*conj[j][k] - de_dT[j][k];
}
}
}
*/
// PRINT_MAT(de_dT,4,4);
// exit(1);
//----------------------------------
// How large is the gradient ?
//----------------------------------
double gradSizeRot = 0.0;
double gradSizePos = 0.0;
for (j=0; j<3; j++) {
for (k=0; k<3; k++) {
gradSizeRot += _ABS(conj[j][k]);
}
gradSizePos += _ABS(conj[j][k]);
}
if (gradSizeRot <= TOO_SMALL && gradSizePos <= TOO_SMALL) { break; } // Quit, we've totally converged
//----------------------------------
// Descend in the gradient direction
//----------------------------------
if (gradSizeRot > TOO_SMALL) {
float scaleRot = stepSizeRot / gradSizeRot;
for (j=0; j<3; j++) {
for (k=0; k<3; k++) {
T[j][k] += scaleRot * conj[j][k];
}
}
stepSizeRot *= falloff;
}
if (gradSizePos > TOO_SMALL) {
float scalePos = stepSizePos / gradSizePos;
for (j=0; j<3; j++) {
T[j][3] += scalePos * conj[j][3];
}
stepSizePos *= falloff;
}
// Constrain the gradient (such that scaling is one)
if (constrain)
{
// Measure the scales
float len[3] = {0.0, 0.0, 0.0};
for (j=0; j<3; j++) {
double lenSq = 0.0;
for (k=0; k<3; k++) { lenSq += (double)T[j][k] * (double)T[j][k]; }
len[j] = sqrt(lenSq);
}
// How far off is the scale?
float xzLen = 0.5 * (len[0] + len[2]);
if (xzLen > TOO_SMALL) {
float inv_xzLen = 1.0 / xzLen;
for (j=0; j<3; j++) {
T[3][j] *= inv_xzLen;
}
}
// Rescale the thing
for (j=0; j<3; j++)
{
if (len[j] > TOO_SMALL) {
float inv_len = 1.0 / len[j];
for (k=0; k<3; k++) { T[j][k] *= inv_len; }
}
}
}
}
}
int main()
{
int i,j,k;
float Tcalc[4][4];
float O[MAX_POINTS][4];
float N[MAX_POINTS][3];
float D[MAX_POINTS];
int nPoints = 0;
// Read the hmd points
ReadHmdPoints();
//-------------------------
// Read the lighthouse data
//-------------------------
FILE *fin = fopen("ptinfo.csv", "r");
if (fin==NULL) { printf("ERROR: could not open ptinfo.csv for reading\n"); exit(1); }
while (!feof(fin))
{
// Read the angle
int sen,lh,axis,count;
float angle, avglen, stddevang, stddevlen;
float max_outlier_length, max_outlier_angle;
int rt = fscanf( fin, "%d %d %d %d %f %f %f %f %f %f\n",
&sen, &lh, &axis, &count,
&angle, &avglen, &stddevang, &stddevlen,
&max_outlier_length, &max_outlier_angle);
if (rt != 10) { break; }
if (lh == LH_ID && sen < NUM_HMD) {
// Set the offset
O[nPoints][0] = hmd_pos[sen][0];
O[nPoints][1] = hmd_pos[sen][1];
O[nPoints][2] = hmd_pos[sen][2];
O[nPoints][3] = 1.0;
// Calculate the plane equation
if (axis == 1) { // Horizontal
N[nPoints][0] = -cos(angle);
N[nPoints][1] = -sin(angle);
N[nPoints][2] = 0.0;
D[nPoints] = 0.0;
} else { // Vertical
N[nPoints][0] = 0.0;
N[nPoints][1] = -sin(angle);
N[nPoints][2] = cos(angle);
D[nPoints] = 0.0;
}
printf("pt %d O %.3f %.3f %.3f %.3f N %.3f %.3f %.3f D %.3f\n",
nPoints,
O[nPoints][0], O[nPoints][1], O[nPoints][2], O[nPoints][3],
N[nPoints][0], N[nPoints][1], N[nPoints][2],
D[nPoints]);
nPoints++;
}
}
fclose(fin);
printf("nPoints %d\n", nPoints);
// Run the calculation for Tcalc
int run;
//for (run=0; run<100; run++) {
// Initialize Tcalc to the identity matrix
//memcpy(Tcalc, Torig, 4*4*sizeof(float));
memset(Tcalc, 0, 4*4*sizeof(float));
for (i=0; i<4; i++) { Tcalc[i][i] = 1.0f; }
// Solve it!
AffineSolve(
Tcalc, // OUTPUT: transform
O, // INPUT: points, offsets
N, // INPUT: plane normals
D, // INPUT: plane offsets
nPoints, NITER,
STEP_SIZE_ROT, STEP_SIZE_POS, FALLOFF,
1);
//}
PRINT_MAT(Tcalc,4,4);
// insert code here...
printf("Hello, World!\n");
return 0;
}
|