aboutsummaryrefslogtreecommitdiff
path: root/src/poser_turveytori.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/poser_turveytori.c')
-rw-r--r--src/poser_turveytori.c1604
1 files changed, 1604 insertions, 0 deletions
diff --git a/src/poser_turveytori.c b/src/poser_turveytori.c
new file mode 100644
index 0000000..c251040
--- /dev/null
+++ b/src/poser_turveytori.c
@@ -0,0 +1,1604 @@
+#include <survive.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <memory.h>
+#include <assert.h>
+#include "linmath.h"
+#include <stddef.h>
+#include <math.h>
+#include <stdint.h>
+#if defined(__FreeBSD__) || defined(__APPLE__)
+#include <stdlib.h>
+#else
+#include <malloc.h> //for alloca
+#endif
+
+
+#define PointToFlts(x) ((FLT*)(x))
+
+typedef struct
+{
+ FLT x;
+ FLT y;
+ FLT z;
+} Point;
+
+void writePoint(FILE *file, double x, double y, double z, unsigned int rgb) {}
+void updateHeader(FILE * file) {}
+void writeAxes(FILE * file) {}
+void drawLineBetweenPoints(FILE *file, Point a, Point b, unsigned int color) {}
+void writePcdHeader(FILE * file) {}
+void writePointCloud(FILE *f, Point *pointCloud, unsigned int Color) {}
+void markPointWithStar(FILE *file, Point point, unsigned int color) {}
+
+typedef struct
+{
+ Point point; // location of the sensor on the tracked object;
+ Point normal; // unit vector indicating the normal for the sensor
+ double theta; // "horizontal" angular measurement from lighthouse radians
+ double phi; // "vertical" angular measurement from lighthouse in radians.
+} TrackedSensor;
+
+typedef struct
+{
+ size_t numSensors;
+ TrackedSensor sensor[0];
+} TrackedObject;
+
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846264338327
+#endif
+
+#define SQUARED(x) ((x)*(x))
+
+typedef union
+{
+ struct
+ {
+ unsigned char Blue;
+ unsigned char Green;
+ unsigned char Red;
+ unsigned char Alpha;
+ };
+ uint32_t long_value;
+} RGBValue;
+
+static RGBValue RED = { .Red = 255,.Green = 0,.Blue = 0,.Alpha = 125 };
+static RGBValue GREEN = { .Red = 0,.Green = 255,.Blue = 0,.Alpha = 125 };
+static RGBValue BLUE = { .Red = 0,.Green = 0,.Blue = 255,.Alpha = 125 };
+
+static const double WORLD_BOUNDS = 100;
+#define MAX_TRACKED_POINTS 40
+
+static const float DefaultPointsPerOuterDiameter = 60;
+
+typedef struct
+{
+ FLT down[3]; // populated by the IMU for posing
+ //Stuff
+
+#define OLD_ANGLES_BUFF_LEN 3
+ FLT oldAngles[SENSORS_PER_OBJECT][2][NUM_LIGHTHOUSES][OLD_ANGLES_BUFF_LEN]; // sensor, sweep axis, lighthouse, instance
+ int angleIndex[NUM_LIGHTHOUSES][2]; // index into circular buffer ahead. separate index for each axis.
+ int lastAxis[NUM_LIGHTHOUSES];
+} ToriData;
+
+
+
+
+
+
+
+static FLT distance(Point a, Point b)
+{
+ FLT x = a.x - b.x;
+ FLT y = a.y - b.y;
+ FLT z = a.z - b.z;
+ return FLT_SQRT(x*x + y*y + z*z);
+}
+
+Matrix3x3 GetRotationMatrixForTorus(Point a, Point b)
+{
+ Matrix3x3 result;
+ FLT v1[3] = { 0, 0, 1 };
+ FLT v2[3] = { a.x - b.x, a.y - b.y, a.z - b.z };
+
+ normalize3d(v2, v2);
+
+ rotation_between_vecs_to_m3(&result, v1, v2);
+
+ // Useful for debugging...
+ //FLT v2b[3];
+ //rotate_vec(v2b, v1, result);
+
+ return result;
+}
+
+typedef struct
+{
+ Point a;
+ Point b;
+ FLT angle;
+ FLT tanAngle; // tangent of angle
+ Matrix3x3 rotation;
+ Matrix3x3 invRotation; // inverse of rotation
+ char ai;
+ char bi;
+} PointsAndAngle;
+
+
+Point RotateAndTranslatePoint(Point p, Matrix3x3 rot, Point newOrigin)
+{
+ Point q;
+
+ double pf[3] = { p.x, p.y, p.z };
+ q.x = rot.val[0][0] * p.x + rot.val[1][0] * p.y + rot.val[2][0] * p.z + newOrigin.x;
+ q.y = rot.val[0][1] * p.x + rot.val[1][1] * p.y + rot.val[2][1] * p.z + newOrigin.y;
+ q.z = rot.val[0][2] * p.x + rot.val[1][2] * p.y + rot.val[2][2] * p.z + newOrigin.z;
+
+ return q;
+}
+
+double angleFromPoints(Point p1, Point p2, Point center)
+{
+ Point v1, v2, v1norm, v2norm;
+ v1.x = p1.x - center.x;
+ v1.y = p1.y - center.y;
+ v1.z = p1.z - center.z;
+
+ v2.x = p2.x - center.x;
+ v2.y = p2.y - center.y;
+ v2.z = p2.z - center.z;
+
+ double v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z);
+ v1norm.x = v1.x / v1mag;
+ v1norm.y = v1.y / v1mag;
+ v1norm.z = v1.z / v1mag;
+
+ double v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z);
+ v2norm.x = v2.x / v2mag;
+ v2norm.y = v2.y / v2mag;
+ v2norm.z = v2.z / v2mag;
+
+ double res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z;
+
+ double angle = acos(res);
+
+ return angle;
+}
+
+Point midpoint(Point a, Point b)
+{
+ Point m;
+ m.x = (a.x + b.x) / 2;
+ m.y = (a.y + b.y) / 2;
+ m.z = (a.z + b.z) / 2;
+
+ return m;
+}
+
+// What we're doing here is:
+// * Given a point in space
+// * And points and a lighthouse angle that implicitly define a torus
+// * for that torus, what is the toroidal angle of the plane that will go through that point in space
+// * and given that toroidal angle, what is the poloidal angle that will be directed toward that point in space?
+void estimateToroidalAndPoloidalAngleOfPoint(
+ PointsAndAngle *pna,
+ Point point,
+ double *toroidalSin,
+ double *toroidalCos,
+ double *poloidalAngle,
+ double *poloidalSin)
+{
+ // We take the inverse of the rotation matrix, and this now defines a rotation matrix that will take us from
+ // the tracked object coordinate system into the "easy" or "default" coordinate system of the torus.
+ // Using this will allow us to derive angles much more simply by being in a "friendly" coordinate system.
+ Matrix3x3 rot = pna->invRotation;
+ Point origin;
+ origin.x = 0;
+ origin.y = 0;
+ origin.z = 0;
+
+ Point m = midpoint(pna->a, pna->b);
+
+ // in this new coordinate system, we'll rename all of the points we care about to have an "F" after them
+ // This will be their representation in the "friendly" coordinate system
+ Point pointF;
+
+ // Okay, I lied a little above. In addition to the rotation matrix that we care about, there was also
+ // a translation that we did to move the origin. If we're going to get to the "friendly" coordinate system
+ // of the torus, we need to first undo the translation, then undo the rotation. Below, we're undoing the translation.
+ pointF.x = point.x - m.x;
+ pointF.y = point.y - m.y;
+ pointF.z = point.z - m.z;
+
+ // now we'll undo the rotation part.
+ pointF = RotateAndTranslatePoint(pointF, rot, origin);
+
+ // hooray, now pointF is in our more-friendly coordinate system.
+
+ // Now, it's time to figure out the toroidal angle to that point. This should be pretty easy.
+ // We will "flatten" the z dimension to only look at the x and y values. Then, we just need to measure the
+ // angle between a vector to pointF and a vector along the x axis.
+
+ FLT toroidalHyp = FLT_SQRT(SQUARED(pointF.y) + SQUARED(pointF.x));
+
+ *toroidalSin = pointF.y / toroidalHyp;
+
+ *toroidalCos = pointF.x / toroidalHyp;
+
+ //*toroidalAngle = atan(pointF.y / pointF.x);
+ //if (pointF.x < 0)
+ //{
+ // *toroidalAngle += M_PI;
+ //}
+
+ //assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
+ //assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);
+
+ //assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 < 0.000001);
+ //assert(*toroidalCos / FLT_COS(*toroidalAngle) - 1 > -0.000001);
+
+ // SCORE!! We've got the toroidal angle. We're half done!
+
+ // Okay, what next...? Now, we will need to rotate the torus *again* to make it easy to
+ // figure out the poloidal angle. We should rotate the entire torus by the toroidal angle
+ // so that the point we're focusin on will lie on the x/z plane. We then should translate the
+ // torus so that the center of the poloidal circle is at the origin. At that point, it will
+ // be trivial to determine the poloidal angle-- it will be the angle on the xz plane of a
+ // vector from the origin to the point.
+
+ // okay, instead of rotating the torus & point by the toroidal angle to get the point on
+ // the xz plane, we're going to take advantage of the radial symmetry of the torus
+ // (i.e. it's symmetric about the point we'd want to rotate it, so the rotation wouldn't
+ // change the torus at all). Therefore, we'll leave the torus as is, but we'll rotate the point
+ // This will only impact the x and y coordinates, and we'll use "G" as the postfix to represent
+ // this new coordinate system
+
+ Point pointG;
+ pointG.z = pointF.z;
+ pointG.y = 0;
+ pointG.x = sqrt(SQUARED(pointF.x) + SQUARED(pointF.y));
+
+ // okay, that ended up being easier than I expected. Now that we have the point on the xZ plane,
+ // our next step will be to shift it down so that the center of the poloidal circle is at the origin.
+ // As you may have noticed, y has now gone to zero, and from here on out, we can basically treat
+ // this as a 2D problem. I think we're getting close...
+
+ // I stole these lines from the torus generator. Gonna need the poloidal radius.
+ double distanceBetweenPoints = distance(pna->a, pna->b); // we don't care about the coordinate system of these points because we're just getting distance.
+ double toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
+ double poloidalRadius = sqrt(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));
+
+ // The center of the polidal circle already lies on the z axis at this point, so we won't shift z at all.
+ // The shift along the X axis will be the toroidal radius.
+
+ Point pointH;
+ pointH.z = pointG.z;
+ pointH.y = pointG.y;
+ pointH.x = pointG.x - toroidalRadius;
+
+ // Okay, almost there. If we treat pointH as a vector on the XZ plane, if we get its angle,
+ // that will be the poloidal angle we're looking for. (crosses fingers)
+
+ FLT poloidalHyp = FLT_SQRT(SQUARED(pointH.z) + SQUARED(pointH.x));
+
+ *poloidalSin = pointH.z / poloidalHyp;
+
+
+ *poloidalAngle = atan(pointH.z / pointH.x);
+ if (pointH.x < 0)
+ {
+ *poloidalAngle += M_PI;
+ }
+
+ //assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 < 0.000001);
+ //assert(*toroidalSin / FLT_SIN(*toroidalAngle) - 1 > -0.000001);
+
+
+
+ // Wow, that ended up being not so much code, but a lot of interesting trig.
+ // can't remember the last time I spent so much time working through each line of code.
+
+ return;
+}
+
+#define MAX_POINT_PAIRS 100
+
+FLT angleBetweenSensors(TrackedSensor *a, TrackedSensor *b)
+{
+ FLT angle = FLT_ACOS(FLT_COS(a->phi - b->phi)*FLT_COS(a->theta - b->theta));
+ //FLT angle2 = FLT_ACOS(FLT_COS(b->phi - a->phi)*FLT_COS(b->theta - a->theta));
+
+ return angle;
+}
+
+// This provides a pretty good estimate of the angle above, probably better
+// the further away the lighthouse is. But, it's not crazy-precise.
+// It's main advantage is speed.
+FLT pythAngleBetweenSensors2(TrackedSensor *a, TrackedSensor *b)
+{
+ FLT p = (a->phi - b->phi);
+ FLT d = (a->theta - b->theta);
+
+ FLT adjd = FLT_SIN((a->phi + b->phi) / 2);
+ FLT adjP = FLT_SIN((a->theta + b->theta) / 2);
+ FLT pythAngle = sqrt(SQUARED(p*adjP) + SQUARED(d*adjd));
+ return pythAngle;
+}
+
+Point calculateTorusPointFromAngles(PointsAndAngle *pna, FLT toroidalSin, FLT toroidalCos, FLT poloidalAngle, FLT poloidalSin)
+{
+ Point result;
+
+ FLT distanceBetweenPoints = distance(pna->a, pna->b);
+ Point m = midpoint(pna->a, pna->b);
+ Matrix3x3 rot = pna->rotation;
+
+ FLT toroidalRadius = distanceBetweenPoints / (2 * pna->tanAngle);
+ FLT poloidalRadius = FLT_SQRT(SQUARED(toroidalRadius) + SQUARED(distanceBetweenPoints / 2));
+
+ result.x = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalCos;
+ result.y = (toroidalRadius + poloidalRadius*cos(poloidalAngle))*toroidalSin;
+ result.z = poloidalRadius*poloidalSin;
+ result = RotateAndTranslatePoint(result, rot, m);
+
+ return result;
+}
+
+FLT getPointFitnessForPna(Point pointIn, PointsAndAngle *pna)
+{
+
+ double toroidalSin = 0;
+ double toroidalCos = 0;
+ double poloidalAngle = 0;
+ double poloidalSin = 0;
+
+ estimateToroidalAndPoloidalAngleOfPoint(
+ pna,
+ pointIn,
+ &toroidalSin,
+ &toroidalCos,
+ &poloidalAngle,
+ &poloidalSin);
+
+ Point torusPoint = calculateTorusPointFromAngles(pna, toroidalSin, toroidalCos, poloidalAngle, poloidalSin);
+
+ FLT dist = distance(pointIn, torusPoint);
+
+ // This is some voodoo black magic. This is here to solve the problem that the origin
+ // (which is near the center of all the tori) erroniously will rank as a good match.
+ // through a lot of empiracle testing on how to compensate for this, the "fudge factor"
+ // below ended up being the best fit. As simple as it is, I have a strong suspicion
+ // that there's some crazy complex thesis-level math that could be used to derive this
+ // but it works so we'll run with it.
+ // Note that this may be resulting in a skewing of the found location by several millimeters.
+ // it is not clear if this is actually removing existing skew (to get a more accurate value)
+ // or if it is introducing an undesirable skew.
+ double fudge = FLT_SIN((poloidalAngle - M_PI) / 2);
+ dist = dist / fudge;
+
+ return dist;
+}
+
+FLT getPointFitness(Point pointIn, PointsAndAngle *pna, size_t pnaCount, int deubgPrint)
+{
+ FLT fitness;
+
+ FLT resultSum = 0;
+ FLT *fitnesses = alloca(sizeof(FLT) * pnaCount);
+ int i=0, j=0;
+
+ FLT worstFitness = 0;
+
+ for (size_t i = 0; i < pnaCount; i++)
+ {
+ fitness = getPointFitnessForPna(pointIn, &(pna[i]));
+
+ if (worstFitness < fitness)
+ {
+ i = pna[i].ai;
+ j = pna[i].bi;
+ worstFitness = fitness;
+ }
+
+ fitnesses[i] = fitness;
+ if (deubgPrint)
+ {
+ printf(" [%d, %d](%f)\n", pna[i].ai, pna[i].bi, fitness);
+ }
+ }
+
+ for (size_t i = 0; i < pnaCount; i++)
+ {
+ // TODO: This is an UGLY HACK!!! It is NOT ROBUST and MUST BE BETTER
+ // Right now, we're just throwing away the single worst fitness value
+ // this works frequently, but we REALLY need to do a better job of determing
+ // exactly when we should throw away a bad value. I'm thinking that decision
+ // alone could be a master's thesis, so lots of work to be done.
+ // This is just a stupid general approach that helps in a lot of cases,
+ // but is NOT suitable for long term use.
+ //if (pna[i].bi != i && pna[i].bi != j && pna[i].ai != i && pna[i].ai != j)
+ if (fitnesses[i] != worstFitness)
+ resultSum += SQUARED(fitnesses[i]);
+ }
+ return 1 / FLT_SQRT(resultSum);
+}
+
+// TODO: Use a central point instead of separate "minus" points for each axis. This will reduce
+// the number of fitness calls by 1/3.
+Point getGradient(Point pointIn, PointsAndAngle *pna, size_t pnaCount, FLT precision)
+{
+ Point result;
+
+ Point tmpXplus = pointIn;
+ Point tmpXminus = pointIn;
+ tmpXplus.x = pointIn.x + precision;
+ tmpXminus.x = pointIn.x - precision;
+ result.x = getPointFitness(tmpXplus, pna, pnaCount, 0) - getPointFitness(tmpXminus, pna, pnaCount, 0);
+
+ Point tmpYplus = pointIn;
+ Point tmpYminus = pointIn;
+ tmpYplus.y = pointIn.y + precision;
+ tmpYminus.y = pointIn.y - precision;
+ result.y = getPointFitness(tmpYplus, pna, pnaCount, 0) - getPointFitness(tmpYminus, pna, pnaCount, 0);
+
+ Point tmpZplus = pointIn;
+ Point tmpZminus = pointIn;
+ tmpZplus.z = pointIn.z + precision;
+ tmpZminus.z = pointIn.z - precision;
+ result.z = getPointFitness(tmpZplus, pna, pnaCount, 0) - getPointFitness(tmpZminus, pna, pnaCount, 0);
+
+ return result;
+}
+
+Point getNormalizedAndScaledVector(Point vectorIn, FLT desiredMagnitude)
+{
+ FLT distanceIn = sqrt(SQUARED(vectorIn.x) + SQUARED(vectorIn.y) + SQUARED(vectorIn.z));
+
+ FLT scale = desiredMagnitude / distanceIn;
+
+ Point result = vectorIn;
+
+ result.x *= scale;
+ result.y *= scale;
+ result.z *= scale;
+
+ return result;
+}
+
+Point getAvgPoints(Point a, Point b)
+{
+ Point result;
+ result.x = (a.x + b.x) / 2;
+ result.y = (a.y + b.y) / 2;
+ result.z = (a.z + b.z) / 2;
+ return result;
+}
+
+
+// This is modifies the basic gradient descent algorithm to better handle the shallow valley case,
+// which appears to be typical of this convergence.
+static Point RefineEstimateUsingModifiedGradientDescent1(Point initialEstimate, PointsAndAngle *pna, size_t pnaCount, FILE *logFile)
+{
+ int i = 0;
+ FLT lastMatchFitness = getPointFitness(initialEstimate, pna, pnaCount, 0);
+ Point lastPoint = initialEstimate;
+
+ // The values below are somewhat magic, and definitely tunable
+ // The initial vlue of g will represent the biggest step that the gradient descent can take at first.
+ // bigger values may be faster, especially when the initial guess is wildly off.
+ // The downside to a bigger starting guess is that if we've picked a good guess at the local minima
+ // if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
+ // That's fairly unlikely with the lighthouse problem, from expereince.
+ // The other downside is that if it's too big, we may have to spend a few iterations before it gets down
+ // to a size that doesn't jump us out of our minima.
+ // The terminal value of g represents how close we want to get to the local minima before we're "done"
+ // The change in value of g for each iteration is intentionally very close to 1.
+ // in fact, it probably could probably be 1 without any issue. The main place where g is decremented
+ // is in the block below when we've made a jump that results in a worse fitness than we're starting at.
+ // In those cases, we don't take the jump, and instead lower the value of g and try again.
+ for (FLT g = 0.2; g > 0.00001; g *= 0.99)
+ {
+ i++;
+ Point point1 = lastPoint;
+ // let's get 3 iterations of gradient descent here.
+ Point gradient1 = getGradient(point1, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
+ Point gradientN1 = getNormalizedAndScaledVector(gradient1, g);
+
+ Point point2;
+ point2.x = point1.x + gradientN1.x;
+ point2.y = point1.y + gradientN1.y;
+ point2.z = point1.z + gradientN1.z;
+
+ Point gradient2 = getGradient(point2, pna, pnaCount, g / 1000 /*somewhat arbitrary*/);
+ Point gradientN2 = getNormalizedAndScaledVector(gradient2, g);
+
+ Point point3;
+ point3.x = point2.x + gradientN2.x;
+ point3.y = point2.y + gradientN2.y;
+ point3.z = point2.z + gradientN2.z;
+
+ // remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
+ // Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
+ // gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
+ // converging gradient descent makes. Instead of using the gradient as the best indicator of
+ // the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
+ // following *that* vector. As it turns out, this works *amazingly* well.
+
+ Point specialGradient = { .x = point3.x - point1.x,.y = point3.y - point1.y,.z = point3.y - point1.y };
+
+ // The second parameter to this function is very much a tunable parameter. Different values will result
+ // in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
+ // It's not clear what would be optimum here.
+ specialGradient = getNormalizedAndScaledVector(specialGradient, g / 4);
+
+ Point point4;
+
+ point4.x = point3.x + specialGradient.x;
+ point4.y = point3.y + specialGradient.y;
+ point4.z = point3.z + specialGradient.z;
+
+ FLT newMatchFitness = getPointFitness(point4, pna, pnaCount, 0);
+
+ if (newMatchFitness > lastMatchFitness)
+ {
+ if (logFile)
+ {
+ writePoint(logFile, lastPoint.x, lastPoint.y, lastPoint.z, 0xFFFFFF);
+ }
+
+ lastMatchFitness = newMatchFitness;
+ lastPoint = point4;
+#ifdef TORI_DEBUG
+ printf("+");
+#endif
+ }
+ else
+ {
+#ifdef TORI_DEBUG
+ printf("-");
+#endif
+ g *= 0.7;
+
+ }
+
+ // from empiracle evidence, we're probably "good enough" at this point.
+ // So, even though we could still improve, we're likely to be improving
+ // very slowly, and we should just take what we've got and move on.
+ // This also seems to happen almost only when data is a little more "dirty"
+ // because the tracker is being rotated.
+ if (i > 120)
+ {
+ //printf("i got big");
+ break;
+ }
+ }
+ printf(" i=%3d ", i);
+
+ return lastPoint;
+}
+
+
+// interesting-- this is one place where we could use any sensors that are only hit by
+// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
+FLT RotationEstimateFitnessOld(Point lhPoint, FLT *quaternion, TrackedObject *obj)
+{
+ FLT fitness = 0;
+ for (size_t i = 0; i < obj->numSensors; i++)
+ {
+ // first, get the normal of the plane for the horizonal sweep
+ FLT theta = obj->sensor[i].theta;
+ // make two vectors that lie on the plane
+ FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
+ FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
+
+ FLT tNormH[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormH, t1H, t2H);
+
+ normalize3d(tNormH, tNormH);
+
+ // Now do the same for the vertical sweep
+
+ // first, get the normal of the plane for the horizonal sweep
+ FLT phi = obj->sensor[i].phi;
+ // make two vectors that lie on the plane
+ FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
+ FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
+
+ FLT tNormV[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormV, t1V, t2V);
+
+ normalize3d(tNormV, tNormV);
+
+
+ // First, where is the sensor in the object's reference frame?
+ FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
+ // Where is the point, in the reference frame of the lighthouse?
+ // This has two steps, first we translate from the object's location being the
+ // origin to the lighthouse being the origin.
+ // And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
+
+ FLT sensor_in_lh_reference_frame[3];
+ sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
+
+ quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
+
+ // now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
+
+ // We need an arbitrary vector from the plane to the point.
+ // Since the plane goes through the origin, this is trivial.
+ // The sensor point itself is such a vector!
+
+ // And go calculate the distances!
+ // TODO: don't need to ABS these because we square them below.
+ FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
+ FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
+
+
+ fitness += SQUARED(dH);
+ fitness += SQUARED(dV);
+ }
+
+ fitness = FLT_SQRT(fitness);
+
+ return fitness;
+}
+
+FLT RotationEstimateFitnessAxisAngle(Point lh, FLT *AxisAngle, TrackedObject *obj)
+{
+ // For this fitness calculator, we're going to use the rotation information to figure out where
+ // we expect to see the tracked object sensors, and we'll do a sum of squares to grade
+ // the quality of the guess formed by the AxisAngle;
+
+ FLT fitness = 0;
+
+ // for each point in the tracked object
+ for (int i=0; i< obj->numSensors; i++)
+ {
+
+
+
+ // let's see... we need to figure out where this sensor should be in the LH reference frame.
+ FLT sensorLocation[3] = {obj->sensor[i].point.x-lh.x, obj->sensor[i].point.y-lh.y, obj->sensor[i].point.z-lh.z};
+
+ // And this puppy needs to be rotated...
+
+ rotatearoundaxis(sensorLocation, sensorLocation, AxisAngle, AxisAngle[3]);
+
+ // Now, the vector indicating the position of the sensor, as seen by the lighthouse is:
+ FLT realVectFromLh[3] = {1, tan(obj->sensor[i].theta - LINMATHPI/2), tan(obj->sensor[i].phi - LINMATHPI/2)};
+
+ // and the vector we're calculating given the rotation passed in is the same as the sensor location:
+ FLT calcVectFromLh[3] = {sensorLocation[0], sensorLocation[1], sensorLocation[2]};
+
+ FLT angleBetween = anglebetween3d( realVectFromLh, calcVectFromLh );
+
+ fitness += SQUARED(angleBetween);
+ }
+
+ return 1/FLT_SQRT(fitness);
+}
+
+// This figures out how far away from the scanned planes each point is, then does a sum of squares
+// for the fitness.
+//
+// interesting-- this is one place where we could use any sensors that are only hit by
+// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
+FLT RotationEstimateFitnessAxisAngleOriginal(Point lhPoint, FLT *quaternion, TrackedObject *obj)
+{
+ FLT fitness = 0;
+ for (size_t i = 0; i < obj->numSensors; i++)
+ {
+ // first, get the normal of the plane for the horizonal sweep
+ FLT theta = obj->sensor[i].theta;
+ // make two vectors that lie on the plane
+ FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
+ FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
+
+ FLT tNormH[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormH, t1H, t2H);
+
+ normalize3d(tNormH, tNormH);
+
+ // Now do the same for the vertical sweep
+
+ // first, get the normal of the plane for the horizonal sweep
+ FLT phi = obj->sensor[i].phi;
+ // make two vectors that lie on the plane
+ FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
+ FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
+
+ FLT tNormV[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormV, t1V, t2V);
+
+ normalize3d(tNormV, tNormV);
+
+
+ // First, where is the sensor in the object's reference frame?
+ FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
+ // Where is the point, in the reference frame of the lighthouse?
+ // This has two steps, first we translate from the object's location being the
+ // origin to the lighthouse being the origin.
+ // And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
+
+ FLT sensor_in_lh_reference_frame[3];
+ sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
+
+ //quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
+ rotatearoundaxis(sensor_in_lh_reference_frame, sensor_in_lh_reference_frame, quaternion, quaternion[3]);
+
+ // now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
+
+ // We need an arbitrary vector from the plane to the point.
+ // Since the plane goes through the origin, this is trivial.
+ // The sensor point itself is such a vector!
+
+ // And go calculate the distances!
+ // TODO: don't need to ABS these because we square them below.
+ FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
+ FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
+
+
+ fitness += SQUARED(dH);
+ fitness += SQUARED(dV);
+ }
+
+ fitness = FLT_SQRT(fitness);
+
+ return 1/fitness;
+}
+
+// interesting-- this is one place where we could use any sensors that are only hit by
+// just an x or y axis to make our estimate better. TODO: bring that data to this fn.
+FLT RotationEstimateFitnessQuaternion(Point lhPoint, FLT *quaternion, TrackedObject *obj)
+{
+ FLT fitness = 0;
+ for (size_t i = 0; i < obj->numSensors; i++)
+ {
+ // first, get the normal of the plane for the horizonal sweep
+ FLT theta = obj->sensor[i].theta;
+ // make two vectors that lie on the plane
+ FLT t1H[3] = { 1, tan(theta-LINMATHPI/2), 0 };
+ FLT t2H[3] = { 1, tan(theta-LINMATHPI/2), 1 };
+
+ FLT tNormH[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormH, t1H, t2H);
+
+ normalize3d(tNormH, tNormH);
+
+ // Now do the same for the vertical sweep
+
+ // first, get the normal of the plane for the horizonal sweep
+ FLT phi = obj->sensor[i].phi;
+ // make two vectors that lie on the plane
+ FLT t1V[3] = { 0, 1, tan(phi-LINMATHPI/2)};
+ FLT t2V[3] = { 1, 1, tan(phi-LINMATHPI/2)};
+
+ FLT tNormV[3];
+
+ // the normal is the cross of two vectors on the plane.
+ cross3d(tNormV, t1V, t2V);
+
+ normalize3d(tNormV, tNormV);
+
+
+ // First, where is the sensor in the object's reference frame?
+ FLT sensor_in_obj_reference_frame[3] = {obj->sensor->point.x, obj->sensor->point.y, obj->sensor->point.z};
+ // Where is the point, in the reference frame of the lighthouse?
+ // This has two steps, first we translate from the object's location being the
+ // origin to the lighthouse being the origin.
+ // And second, we apply the quaternion to rotate into the proper reference frame for the lighthouse.
+
+ FLT sensor_in_lh_reference_frame[3];
+ sub3d(sensor_in_lh_reference_frame, sensor_in_obj_reference_frame, (FLT[3]){lhPoint.x, lhPoint.y, lhPoint.z});
+
+ quatrotatevector(sensor_in_lh_reference_frame, quaternion, sensor_in_lh_reference_frame);
+ //rotatearoundaxis(sensor_in_lh_reference_frame, sensor_in_lh_reference_frame, quaternion, quaternion[3]);
+
+ // now the we've got the location of the sensor in the lighthouses's reference frame, given lhPoint and quaternion inputs.
+
+ // We need an arbitrary vector from the plane to the point.
+ // Since the plane goes through the origin, this is trivial.
+ // The sensor point itself is such a vector!
+
+ // And go calculate the distances!
+ // TODO: don't need to ABS these because we square them below.
+ FLT dH = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormH));
+ FLT dV = FLT_FABS(dot3d(sensor_in_lh_reference_frame, tNormV));
+
+
+ fitness += SQUARED(dH);
+ fitness += SQUARED(dV);
+ }
+
+ fitness = FLT_SQRT(fitness);
+
+ return 1/fitness;
+}
+
+
+void getRotationGradientQuaternion(FLT *gradientOut, Point lhPoint, FLT *quaternion, TrackedObject *obj, FLT precision)
+{
+
+ FLT baseFitness = RotationEstimateFitnessQuaternion(lhPoint, quaternion, obj);
+
+ FLT tmp0plus[4];
+ quatadd(tmp0plus, quaternion, (FLT[4]){precision, 0, 0, 0});
+ gradientOut[0] = RotationEstimateFitnessQuaternion(lhPoint, tmp0plus, obj) - baseFitness;
+
+ FLT tmp1plus[4];
+ quatadd(tmp1plus, quaternion, (FLT[4]){0, precision, 0, 0});
+ gradientOut[1] = RotationEstimateFitnessQuaternion(lhPoint, tmp1plus, obj) - baseFitness;
+
+ FLT tmp2plus[4];
+ quatadd(tmp2plus, quaternion, (FLT[4]){0, 0, precision, 0});
+ gradientOut[2] = RotationEstimateFitnessQuaternion(lhPoint, tmp2plus, obj) - baseFitness;
+
+ FLT tmp3plus[4];
+ quatadd(tmp3plus, quaternion, (FLT[4]){0, 0, 0, precision});
+ gradientOut[3] = RotationEstimateFitnessQuaternion(lhPoint, tmp3plus, obj) - baseFitness;
+
+ return;
+}
+
+void getRotationGradientAxisAngle(FLT *gradientOut, Point lhPoint, FLT *quaternion, TrackedObject *obj, FLT precision)
+{
+
+ FLT baseFitness = RotationEstimateFitnessAxisAngle(lhPoint, quaternion, obj);
+
+ FLT tmp0plus[4];
+ quatadd(tmp0plus, quaternion, (FLT[4]){precision, 0, 0, 0});
+ gradientOut[0] = RotationEstimateFitnessAxisAngle(lhPoint, tmp0plus, obj) - baseFitness;
+
+ FLT tmp1plus[4];
+ quatadd(tmp1plus, quaternion, (FLT[4]){0, precision, 0, 0});
+ gradientOut[1] = RotationEstimateFitnessAxisAngle(lhPoint, tmp1plus, obj) - baseFitness;
+
+ FLT tmp2plus[4];
+ quatadd(tmp2plus, quaternion, (FLT[4]){0, 0, precision, 0});
+ gradientOut[2] = RotationEstimateFitnessAxisAngle(lhPoint, tmp2plus, obj) - baseFitness;
+
+ FLT tmp3plus[4];
+ quatadd(tmp3plus, quaternion, (FLT[4]){0, 0, 0, precision});
+ gradientOut[3] = RotationEstimateFitnessAxisAngle(lhPoint, tmp3plus, obj) - baseFitness;
+
+ return;
+}
+
+//void getNormalizedAndScaledRotationGradient(FLT *vectorToScale, FLT desiredMagnitude)
+//{
+// quatnormalize(vectorToScale, vectorToScale);
+// quatscale(vectorToScale, vectorToScale, desiredMagnitude);
+// return;
+//}
+void getNormalizedAndScaledRotationGradient(FLT *vectorToScale, FLT desiredMagnitude)
+{
+ quatnormalize(vectorToScale, vectorToScale);
+ quatscale(vectorToScale, vectorToScale, desiredMagnitude);
+ //vectorToScale[3] = desiredMagnitude;
+
+ return;
+}
+
+static void WhereIsTheTrackedObjectAxisAngle(FLT *posOut, FLT *rotation, Point lhPoint)
+{
+ posOut[0] = -lhPoint.x;
+ posOut[1] = -lhPoint.y;
+ posOut[2] = -lhPoint.z;
+
+ rotatearoundaxis(posOut, posOut, rotation, rotation[3]);
+
+ printf("{% 04.4f, % 04.4f, % 04.4f} ", posOut[0], posOut[1], posOut[2]);
+}
+
+static void RefineRotationEstimateAxisAngle(FLT *rotOut, Point lhPoint, FLT *initialEstimate, TrackedObject *obj)
+{
+ int i = 0;
+ FLT lastMatchFitness = RotationEstimateFitnessAxisAngle(lhPoint, initialEstimate, obj);
+
+ quatcopy(rotOut, initialEstimate);
+
+ // The values below are somewhat magic, and definitely tunable
+ // The initial vlue of g will represent the biggest step that the gradient descent can take at first.
+ // bigger values may be faster, especially when the initial guess is wildly off.
+ // The downside to a bigger starting guess is that if we've picked a good guess at the local minima
+ // if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
+ // That's fairly unlikely with the lighthouse problem, from expereince.
+ // The other downside is that if it's too big, we may have to spend a few iterations before it gets down
+ // to a size that doesn't jump us out of our minima.
+ // The terminal value of g represents how close we want to get to the local minima before we're "done"
+ // The change in value of g for each iteration is intentionally very close to 1.
+ // in fact, it probably could probably be 1 without any issue. The main place where g is decremented
+ // is in the block below when we've made a jump that results in a worse fitness than we're starting at.
+ // In those cases, we don't take the jump, and instead lower the value of g and try again.
+ for (FLT g = 0.1; g > 0.000000001 || i > 10000; g *= 0.99)
+ {
+ i++;
+ FLT point1[4];
+ quatcopy(point1, rotOut);
+ // let's get 3 iterations of gradient descent here.
+ FLT gradient1[4];
+
+ normalize3d(point1, point1);
+
+ getRotationGradientAxisAngle(gradient1, lhPoint, point1, obj, g/10000);
+ getNormalizedAndScaledRotationGradient(gradient1,g);
+
+ FLT point2[4];
+ quatadd(point2, gradient1, point1);
+ //quatnormalize(point2,point2);
+
+ normalize3d(point1, point1);
+
+ FLT gradient2[4];
+ getRotationGradientAxisAngle(gradient2, lhPoint, point2, obj, g/10000);
+ getNormalizedAndScaledRotationGradient(gradient2,g);
+
+ FLT point3[4];
+ quatadd(point3, gradient2, point2);
+
+ normalize3d(point1, point1);
+
+ //quatnormalize(point3,point3);
+
+ // remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
+ // Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
+ // gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
+ // converging gradient descent makes. Instead of using the gradient as the best indicator of
+ // the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
+ // following *that* vector. As it turns out, this works *amazingly* well.
+
+ FLT specialGradient[4];
+ quatsub(specialGradient,point3,point1);
+
+ // The second parameter to this function is very much a tunable parameter. Different values will result
+ // in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
+ // It's not clear what would be optimum here.
+ getNormalizedAndScaledRotationGradient(specialGradient,g/4);
+
+ FLT point4[4];
+ quatadd(point4, specialGradient, point3);
+ //quatnormalize(point4,point4);
+ normalize3d(point1, point1);
+
+ FLT newMatchFitness = RotationEstimateFitnessAxisAngle(lhPoint, point4, obj);
+
+ if (newMatchFitness > lastMatchFitness)
+ {
+
+ lastMatchFitness = newMatchFitness;
+ quatcopy(rotOut, point4);
+//#ifdef TORI_DEBUG
+ //printf("+ %8.8f, (%8.8f, %8.8f, %8.8f) %f\n", newMatchFitness, point4[0], point4[1], point4[2], point4[3]);
+//#endif
+ g *= 1.02;
+
+ }
+ else
+ {
+//#ifdef TORI_DEBUG
+ //printf("- , %f\n", point4[3]);
+//#endif
+ g *= 0.7;
+
+ }
+
+ if (i > 998)
+ {
+ //printf("Ri got big");
+ break;
+ }
+ }
+ printf(" Ri=%d ", i);
+}
+static void WhereIsTheTrackedObjectQuaternion(FLT *rotation, Point lhPoint)
+{
+ FLT reverseRotation[4] = {rotation[0], rotation[1], rotation[2], -rotation[3]};
+ FLT objPoint[3] = {lhPoint.x, lhPoint.y, lhPoint.z};
+
+ //rotatearoundaxis(objPoint, objPoint, reverseRotation, reverseRotation[3]);
+ quatrotatevector(objPoint, rotation, objPoint);
+ printf("(%f, %f, %f)\n", objPoint[0], objPoint[1], objPoint[2]);
+}
+
+
+
+static void RefineRotationEstimateQuaternion(FLT *rotOut, Point lhPoint, FLT *initialEstimate, TrackedObject *obj)
+{
+ int i = 0;
+ FLT lastMatchFitness = RotationEstimateFitnessQuaternion(lhPoint, initialEstimate, obj);
+
+ quatcopy(rotOut, initialEstimate);
+
+ // The values below are somewhat magic, and definitely tunable
+ // The initial vlue of g will represent the biggest step that the gradient descent can take at first.
+ // bigger values may be faster, especially when the initial guess is wildly off.
+ // The downside to a bigger starting guess is that if we've picked a good guess at the local minima
+ // if there are other local minima, we may accidentally jump to such a local minima and get stuck there.
+ // That's fairly unlikely with the lighthouse problem, from expereince.
+ // The other downside is that if it's too big, we may have to spend a few iterations before it gets down
+ // to a size that doesn't jump us out of our minima.
+ // The terminal value of g represents how close we want to get to the local minima before we're "done"
+ // The change in value of g for each iteration is intentionally very close to 1.
+ // in fact, it probably could probably be 1 without any issue. The main place where g is decremented
+ // is in the block below when we've made a jump that results in a worse fitness than we're starting at.
+ // In those cases, we don't take the jump, and instead lower the value of g and try again.
+ for (FLT g = 0.1; g > 0.000000001; g *= 0.99)
+ {
+ i++;
+ FLT point1[4];
+ quatcopy(point1, rotOut);
+ // let's get 3 iterations of gradient descent here.
+ FLT gradient1[4];
+
+ //normalize3d(point1, point1);
+
+ getRotationGradientQuaternion(gradient1, lhPoint, point1, obj, g/10000);
+ getNormalizedAndScaledRotationGradient(gradient1,g);
+
+ FLT point2[4];
+ quatadd(point2, gradient1, point1);
+ quatnormalize(point2,point2);
+
+ //normalize3d(point1, point1);
+
+ FLT gradient2[4];
+ getRotationGradientQuaternion(gradient2, lhPoint, point2, obj, g/10000);
+ getNormalizedAndScaledRotationGradient(gradient2,g);
+
+ FLT point3[4];
+ quatadd(point3, gradient2, point2);
+
+ //normalize3d(point1, point1);
+
+ quatnormalize(point3,point3);
+
+ // remember that gradient descent has a tendency to zig-zag when it encounters a narrow valley?
+ // Well, solving the lighthouse problem presents a very narrow valley, and the zig-zag of a basic
+ // gradient descent is kinda horrible here. Instead, think about the shape that a zig-zagging
+ // converging gradient descent makes. Instead of using the gradient as the best indicator of
+ // the direction we should follow, we're looking at one side of the zig-zag pattern, and specifically
+ // following *that* vector. As it turns out, this works *amazingly* well.
+
+ FLT specialGradient[4];
+ quatsub(specialGradient,point3,point1);
+
+ // The second parameter to this function is very much a tunable parameter. Different values will result
+ // in a different number of iterations before we get to the minimum. Numbers between 3-10 seem to work well
+ // It's not clear what would be optimum here.
+ getNormalizedAndScaledRotationGradient(specialGradient,g/4);
+
+ FLT point4[4];
+ quatadd(point4, specialGradient, point3);
+ quatnormalize(point4,point4);
+ //normalize3d(point1, point1);
+
+ FLT newMatchFitness = RotationEstimateFitnessQuaternion(lhPoint, point4, obj);
+
+ if (newMatchFitness > lastMatchFitness)
+ {
+
+ lastMatchFitness = newMatchFitness;
+ quatcopy(rotOut, point4);
+//#ifdef TORI_DEBUG
+ //printf("+ %8.8f, (%8.8f, %8.8f, %8.8f) %f\n", newMatchFitness, point4[0], point4[1], point4[2], point4[3]);
+//#endif
+ g *= 1.02;
+ printf("+");
+ WhereIsTheTrackedObjectQuaternion(rotOut, lhPoint);
+ }
+ else
+ {
+//#ifdef TORI_DEBUG
+ //printf("- , %f\n", point4[3]);
+//#endif
+ g *= 0.7;
+ printf("-");
+ }
+
+
+ }
+ printf("Ri=%3d Fitness=%3f ", i, lastMatchFitness);
+}
+
+
+void SolveForRotation(FLT rotOut[4], TrackedObject *obj, Point lh)
+{
+
+ // Step 1, create initial quaternion for guess.
+ // This should have the lighthouse directly facing the tracked object.
+ Point trackedObjRelativeToLh = { .x = -lh.x,.y = -lh.y,.z = -lh.z };
+ FLT theta = atan2(-lh.x, -lh.y);
+ FLT zAxis[4] = { 0, 0, 1 , theta-LINMATHPI/2};
+ FLT quat1[4];
+ quatfromaxisangle(quat1, zAxis, theta);
+
+ //quatfrom2vectors(0,0)
+ // not correcting for phi, but that's less important.
+
+
+ // Step 2, optimize the axis/ angle to match the data.
+ RefineRotationEstimateAxisAngle(rotOut, lh, zAxis, obj);
+
+
+ //// Step 2, optimize the quaternion to match the data.
+ //RefineRotationEstimateQuaternion(rotOut, lh, quat1, obj);
+
+ //WhereIsTheTrackedObjectQuaternion(rotOut, lh);
+
+}
+
+
+static Point SolveForLighthouse(FLT posOut[3], FLT quatOut[4], TrackedObject *obj, SurviveObject *so, char doLogOutput, int lh, int setLhCalibration)
+{
+ //printf("Solving for Lighthouse\n");
+
+ //printf("obj->numSensors = %d;\n", obj->numSensors);
+
+ //for (int i=0; i < obj->numSensors; i++)
+ //{
+ // printf("obj->sensor[%d].normal.x = %f;\n", i, obj->sensor[i].normal.x);
+ // printf("obj->sensor[%d].normal.y = %f;\n", i, obj->sensor[i].normal.y);
+ // printf("obj->sensor[%d].normal.z = %f;\n", i, obj->sensor[i].normal.z);
+ // printf("obj->sensor[%d].point.x = %f;\n", i, obj->sensor[i].point.x);
+ // printf("obj->sensor[%d].point.y = %f;\n", i, obj->sensor[i].point.y);
+ // printf("obj->sensor[%d].point.z = %f;\n", i, obj->sensor[i].point.z);
+ // printf("obj->sensor[%d].phi = %f;\n", i, obj->sensor[i].phi);
+ // printf("obj->sensor[%d].theta = %f;\n\n", i, obj->sensor[i].theta);
+ //}
+ PointsAndAngle pna[MAX_POINT_PAIRS];
+
+ volatile size_t sizeNeeded = sizeof(pna);
+
+ Point avgNorm = { 0 };
+
+ FLT smallestAngle = 20.0;
+ FLT largestAngle = 0;
+
+ size_t pnaCount = 0;
+ for (unsigned int i = 0; i < obj->numSensors; i++)
+ {
+ for (unsigned int j = 0; j < i; j++)
+ {
+ if (pnaCount < MAX_POINT_PAIRS)
+ {
+ pna[pnaCount].a = obj->sensor[i].point;
+ pna[pnaCount].b = obj->sensor[j].point;
+
+ pna[pnaCount].angle = angleBetweenSensors(&obj->sensor[i], &obj->sensor[j]);
+ //pna[pnaCount].angle = pythAngleBetweenSensors2(&obj->sensor[i], &obj->sensor[j]);
+ pna[pnaCount].tanAngle = FLT_TAN(pna[pnaCount].angle);
+
+ if (pna[pnaCount].angle < smallestAngle)
+ {
+ smallestAngle = pna[pnaCount].angle;
+ }
+
+ if (pna[pnaCount].angle > largestAngle)
+ {
+ largestAngle = pna[pnaCount].angle;
+ }
+
+ double pythAngle = sqrt(SQUARED(obj->sensor[i].phi - obj->sensor[j].phi) + SQUARED(obj->sensor[i].theta - obj->sensor[j].theta));
+
+ pna[pnaCount].rotation = GetRotationMatrixForTorus(pna[pnaCount].a, pna[pnaCount].b);
+ pna[pnaCount].invRotation = inverseM33(pna[pnaCount].rotation);
+ pna[pnaCount].ai = i;
+ pna[pnaCount].bi = j;
+
+
+
+ pnaCount++;
+ }
+ }
+
+ avgNorm.x += obj->sensor[i].normal.x;
+ avgNorm.y += obj->sensor[i].normal.y;
+ avgNorm.z += obj->sensor[i].normal.z;
+ }
+ avgNorm.x = avgNorm.x / obj->numSensors;
+ avgNorm.y = avgNorm.y / obj->numSensors;
+ avgNorm.z = avgNorm.z / obj->numSensors;
+
+ FLT avgNormF[3] = { avgNorm.x, avgNorm.y, avgNorm.z };
+
+
+ FILE *logFile = NULL;
+ if (doLogOutput)
+ {
+ logFile = fopen("pointcloud2.pcd", "wb");
+ writePcdHeader(logFile);
+ writeAxes(logFile);
+ }
+
+
+ // Point refinedEstimageGd = RefineEstimateUsingModifiedGradientDescent1(initialEstimate, pna, pnaCount, logFile);
+
+
+ // arbitrarily picking a value of 8 meters out to start from.
+ // intentionally picking the direction of the average normal vector of the sensors that see the lighthouse
+ // since this is least likely to pick the incorrect "mirror" point that would send us
+ // back into the search for the correct point (see "if (a1 > M_PI / 2)" below)
+ Point p1 = getNormalizedAndScaledVector(avgNorm, 8);
+
+ Point refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p1, pna, pnaCount, logFile);
+
+ FLT pf1[3] = { refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z };
+
+ FLT a1 = anglebetween3d(pf1, avgNormF);
+
+ if (a1 > M_PI / 2)
+ {
+ Point p2 = { .x = -refinedEstimateGd.x,.y = -refinedEstimateGd.y,.z = -refinedEstimateGd.z };
+ refinedEstimateGd = RefineEstimateUsingModifiedGradientDescent1(p2, pna, pnaCount, logFile);
+
+ //FLT pf2[3] = { refinedEstimageGd2.x, refinedEstimageGd2.y, refinedEstimageGd2.z };
+
+ //FLT a2 = anglebetween3d(pf2, avgNormF);
+
+ }
+
+ FLT fitGd = getPointFitness(refinedEstimateGd, pna, pnaCount, 0);
+
+ FLT distance = FLT_SQRT(SQUARED(refinedEstimateGd.x) + SQUARED(refinedEstimateGd.y) + SQUARED(refinedEstimateGd.z));
+ printf(" la(% 04.4f) SnsrCnt(%2d) LhPos:(% 04.4f, % 04.4f, % 04.4f) Dist: % 08.8f ", largestAngle, (int)obj->numSensors, refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z, distance);
+ //printf("Distance is %f, Fitness is %f\n", distance, fitGd);
+
+ FLT rot[4]; // this is axis/ angle rotation, not a quaternion!
+ SolveForRotation(rot, obj, refinedEstimateGd);
+ FLT objPos[3];
+
+ WhereIsTheTrackedObjectAxisAngle(objPos, rot, refinedEstimateGd);
+
+ FLT rotQuat[4];
+
+ quatfromaxisangle(rotQuat, rot, rot[3]);
+
+ //{
+ FLT tmpPos[3] = {refinedEstimateGd.x, refinedEstimateGd.y, refinedEstimateGd.z};
+
+ quatrotatevector(tmpPos, rotQuat, tmpPos);
+ //}
+
+ //static int foo = 0;
+
+ //if (0 == foo)
+ if (setLhCalibration)
+ {
+ //foo = 1;
+ if (so->ctx->bsd[lh].PositionSet)
+ {
+ printf("Warning: resetting base station calibration data");
+ }
+
+ FLT invRot[4];
+ quatgetreciprocal(invRot, rotQuat);
+
+ so->ctx->bsd[lh].Pose.Pos[0] = refinedEstimateGd.x;
+ so->ctx->bsd[lh].Pose.Pos[1] = refinedEstimateGd.y;
+ so->ctx->bsd[lh].Pose.Pos[2] = refinedEstimateGd.z;
+ so->ctx->bsd[lh].Pose.Rot[0] = invRot[0];
+ so->ctx->bsd[lh].Pose.Rot[1] = invRot[1];
+ so->ctx->bsd[lh].Pose.Rot[2] = invRot[2];
+ so->ctx->bsd[lh].Pose.Rot[3] = invRot[3];
+ so->ctx->bsd[lh].PositionSet = 1;
+ }
+
+ FLT wcPos[3]; // position in wold coordinates
+
+ quatrotatevector(wcPos, so->ctx->bsd[lh].Pose.Rot, objPos);
+
+ FLT newOrientation[4];
+ quatrotateabout(newOrientation, rotQuat, so->ctx->bsd[lh].Pose.Rot );
+
+ wcPos[0] += so->ctx->bsd[lh].Pose.Pos[0];
+ wcPos[1] += so->ctx->bsd[lh].Pose.Pos[1];
+ wcPos[2] += so->ctx->bsd[lh].Pose.Pos[2];
+
+ so->OutPose.Pos[0] = wcPos[0];
+ so->OutPose.Pos[1] = wcPos[1];
+ so->OutPose.Pos[2] = wcPos[2];
+
+ so->OutPose.Rot[0] = newOrientation[0];
+ so->OutPose.Rot[1] = newOrientation[1];
+ so->OutPose.Rot[2] = newOrientation[2];
+ so->OutPose.Rot[3] = newOrientation[3];
+
+ printf(" <% 04.4f, % 04.4f, % 04.4f > ", wcPos[0], wcPos[1], wcPos[2]);
+
+ if (logFile)
+ {
+ updateHeader(logFile);
+ fclose(logFile);
+ }
+
+ return refinedEstimateGd;
+}
+
+
+
+
+
+
+
+
+static void QuickPose(SurviveObject *so, int lh)
+{
+
+
+ ToriData * td = so->PoserData;
+
+ if (! so->ctx->bsd[lh].PositionSet)
+ {
+ // we don't know where we are! Augh!!!
+ return;
+ }
+
+ //for (int i=0; i < so->nr_locations; i++)
+ //{
+ // FLT x0=td->oldAngles[i][0][0][td->angleIndex[0][0]];
+ // FLT y0=td->oldAngles[i][1][0][td->angleIndex[0][1]];
+ // FLT x1=td->oldAngles[i][0][1][td->angleIndex[1][0]];
+ // FLT y1=td->oldAngles[i][1][1][td->angleIndex[1][1]];
+ // //printf("%2d: %8.8f, %8.8f %8.8f, %8.8f \n",
+ // // i,
+ // // x0,
+ // // y0,
+ // // x1,
+ // // y1
+ // // );
+ // printf("%2d: %8.8f, %8.8f \n",
+ // i,
+ // x0,
+ // y0
+ // );
+ //}
+ //printf("\n");
+
+ TrackedObject *to;
+
+ to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
+
+ {
+ int sensorCount = 0;
+
+ //// TODO: remove, for debug purposes only!
+ //FLT downQuat[4];
+ //FLT negZ[3] = { 0,0,-1 };
+ ////quatfrom2vectors(downQuat, negZ, td->down);
+ //quatfrom2vectors(downQuat, td->down, negZ);
+ //// end TODO
+
+
+ for (int i = 0; i < so->nr_locations; i++)
+ {
+ int angleIndex0 = (td->angleIndex[lh][0] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
+ int angleIndex1 = (td->angleIndex[lh][1] + 1 + OLD_ANGLES_BUFF_LEN) % OLD_ANGLES_BUFF_LEN;
+ if (td->oldAngles[i][0][lh][angleIndex0] != 0 && td->oldAngles[i][1][lh][angleIndex1] != 0)
+ {
+ FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
+ FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
+
+ // TODO: remove these two lines!!!
+ //quatrotatevector(norm, downQuat, norm);
+ //quatrotatevector(point, downQuat, point);
+
+ to->sensor[sensorCount].normal.x = norm[0];
+ to->sensor[sensorCount].normal.y = norm[1];
+ to->sensor[sensorCount].normal.z = norm[2];
+ to->sensor[sensorCount].point.x = point[0];
+ to->sensor[sensorCount].point.y = point[1];
+ to->sensor[sensorCount].point.z = point[2];
+ to->sensor[sensorCount].theta = td->oldAngles[i][0][lh][angleIndex0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
+ to->sensor[sensorCount].phi = td->oldAngles[i][1][lh][angleIndex1] + LINMATHPI / 2; // lighthouse 0, angle 1 (vertical)
+
+
+ sensorCount++;
+ }
+ }
+ to->numSensors = sensorCount;
+
+ if (sensorCount > 4)
+ {
+ FLT pos[3], quat[4];
+
+ SolveForLighthouse(pos, quat, to, so, 0, lh, 0);
+ printf("!\n");
+ }
+
+
+ }
+
+
+ free(to);
+
+}
+
+
+
+int PoserTurveyTori( SurviveObject * so, PoserData * poserData )
+{
+ PoserType pt = poserData->pt;
+ SurviveContext * ctx = so->ctx;
+ ToriData * td = so->PoserData;
+
+
+ if (!td)
+ {
+ so->PoserData = td = malloc(sizeof(ToriData));
+ memset(td, 0, sizeof(ToriData));
+ }
+
+ switch( pt )
+ {
+ case POSERDATA_IMU:
+ {
+ PoserDataIMU * tmpImu = (PoserDataIMU*)poserData;
+
+ // store off data we can use for figuring out what direction is down when doing calibration.
+ //TODO: looks like the data mask isn't getting set correctly.
+ //if (tmpImu->datamask & 1) // accelerometer data is present
+ {
+ td->down[0] = td->down[0] * 0.98 + 0.02 * tmpImu->accel[0];
+ td->down[1] = td->down[1] * 0.98 + 0.02 * tmpImu->accel[1];
+ td->down[2] = td->down[2] * 0.98 + 0.02 * tmpImu->accel[2];
+ }
+ //printf( "IMU:%s (%f %f %f) (%f %f %f)\n", so->codename, tmpImu->accel[0], tmpImu->accel[1], tmpImu->accel[2], tmpImu->gyro[0], tmpImu->gyro[1], tmpImu->gyro[2] );
+ //printf( "Down: (%f %f %f)\n", td->down[0], td->down[1], td->down[2] );
+ break;
+ }
+ case POSERDATA_LIGHT:
+ {
+ PoserDataLight * l = (PoserDataLight*)poserData;
+
+ if (l->lh >= NUM_LIGHTHOUSES || l->lh < 0)
+ {
+ // should never happen. Famous last words...
+ break;
+ }
+ int axis = l->acode & 0x1;
+ //printf( "LIG:%s %d @ %f rad, %f s (AC %d) (TC %d)\n", so->codename, l->sensor_id, l->angle, l->length, l->acode, l->timecode );
+ if ((td->lastAxis[l->lh] != (l->acode & 0x1)) )
+ {
+
+
+ if (0 == l->lh && axis) // only once per full cycle...
+ {
+ static unsigned int counter = 1;
+
+ counter++;
+
+ // let's just do this occasionally for now...
+ if (counter % 2 == 0)
+ QuickPose(so, 0);
+ }
+ // axis changed, time to increment the circular buffer index.
+ td->angleIndex[l->lh][axis]++;
+ td->angleIndex[l->lh][axis] = td->angleIndex[l->lh][axis] % OLD_ANGLES_BUFF_LEN;
+
+ // and clear out the data.
+ for (int i=0; i < SENSORS_PER_OBJECT; i++)
+ {
+ td->oldAngles[i][axis][l->lh][td->angleIndex[l->lh][axis]] = 0;
+ }
+
+ td->lastAxis[l->lh] = axis;
+ }
+
+ td->oldAngles[l->sensor_id][axis][l->lh][td->angleIndex[l->lh][axis]] = l->angle;
+ break;
+ }
+ case POSERDATA_FULL_SCENE:
+ {
+ TrackedObject *to;
+
+ PoserDataFullScene * fs = (PoserDataFullScene*)poserData;
+
+ to = malloc(sizeof(TrackedObject) + (SENSORS_PER_OBJECT * sizeof(TrackedSensor)));
+
+ // if we rotate the internal reference frame of of the tracked object from having -z being arbitrary
+ // to being the down direction as defined by the accelerometer, then when we have come up
+ // with world coordinate system, it will have Z oriented correctly.
+
+ // let's get the quaternion that represents this rotation.
+ FLT downQuat[4];
+ FLT negZ[3] = { 0,0,1 };
+ //quatfrom2vectors(downQuat, negZ, td->down);
+ quatfrom2vectors(downQuat, td->down, negZ);
+
+ {
+ int sensorCount = 0;
+
+
+ for (int i = 0; i < so->nr_locations; i++)
+ {
+ if (fs->lengths[i][0][0] != -1 && fs->lengths[i][0][1] != -1) //lh 0
+ {
+ FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
+ FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
+
+ //quatrotatevector(norm, downQuat, norm);
+ //quatrotatevector(point, downQuat, point);
+
+ to->sensor[sensorCount].normal.x = norm[0];
+ to->sensor[sensorCount].normal.y = norm[1];
+ to->sensor[sensorCount].normal.z = norm[2];
+ to->sensor[sensorCount].point.x = point[0];
+ to->sensor[sensorCount].point.y = point[1];
+ to->sensor[sensorCount].point.z = point[2];
+ to->sensor[sensorCount].theta = fs->angles[i][0][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
+ to->sensor[sensorCount].phi = fs->angles[i][0][1] + LINMATHPI / 2; // lighthouse 0, angle 1 (vertical)
+
+ sensorCount++;
+ }
+ }
+ to->numSensors = sensorCount;
+
+ FLT pos[3], quat[4];
+
+ SolveForLighthouse(pos, quat, to, so, 0, 0, 1);
+ }
+ {
+ int sensorCount = 0;
+ int lh = 1;
+
+ for (int i = 0; i < so->nr_locations; i++)
+ {
+ if (fs->lengths[i][lh][0] != -1 && fs->lengths[i][lh][1] != -1)
+ {
+ FLT norm[3] = { so->sensor_normals[i * 3 + 0] , so->sensor_normals[i * 3 + 1] , so->sensor_normals[i * 3 + 2] };
+ FLT point[3] = { so->sensor_locations[i * 3 + 0] , so->sensor_locations[i * 3 + 1] , so->sensor_locations[i * 3 + 2] };
+
+ //quatrotatevector(norm, downQuat, norm);
+ //quatrotatevector(point, downQuat, point);
+
+ to->sensor[sensorCount].normal.x = norm[0];
+ to->sensor[sensorCount].normal.y = norm[1];
+ to->sensor[sensorCount].normal.z = norm[2];
+ to->sensor[sensorCount].point.x = point[0];
+ to->sensor[sensorCount].point.y = point[1];
+ to->sensor[sensorCount].point.z = point[2];
+ to->sensor[sensorCount].theta = fs->angles[i][lh][0] + LINMATHPI / 2; // lighthouse 0, angle 0 (horizontal)
+ to->sensor[sensorCount].phi = fs->angles[i][lh][1] + LINMATHPI / 2; // lighthosue 0, angle 1 (vertical)
+ sensorCount++;
+ }
+ }
+
+ to->numSensors = sensorCount;
+
+ FLT pos[3], quat[4];
+
+ SolveForLighthouse(pos, quat, to, so, 0, 1, 1);
+ }
+
+ free(to);
+ //printf( "Full scene data.\n" );
+ break;
+ }
+ case POSERDATA_DISASSOCIATE:
+ {
+ free( so->PoserData );
+ so->PoserData = NULL;
+ //printf( "Need to disassociate.\n" );
+ break;
+ }
+ }
+ return 0;
+}
+
+
+REGISTER_LINKTIME( PoserTurveyTori );
+