aboutsummaryrefslogtreecommitdiff
path: root/src/survive_cal.c
blob: 2ed19868b5c2fc90f694f19bc931d458454473a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// (C) 2016, 2017 Joshua Allen, MIT/x11 License.
// (C) 2016, 2017 <>< C. N. Lohr, Under MIT/x11 License.

// All OOTX code was written by J. Allen. Rest of the code is probably mostly CNLohr.
//
// This file is primarily geared to the calibration phase, to produce the world cal information.
// Once world cal is produced, it's unlikely you will need this file at all.  The plan is
// to not include it at all on any stripped-down versions of libsurvive.
//

#include "survive_cal.h"
#include "survive_internal.h"
#include <math.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

#define PTS_BEFORE_COMMON 32
#define NEEDED_COMMON_POINTS 10
#define NEEDED_TIMES_OF_COMMON 5
#define DRPTS_NEEDED_FOR_AVG ((int)(DRPTS*3/4))

static void handle_calibration( struct SurviveCalData *cd );
static void reset_calibration( struct SurviveCalData * cd );

void ootx_packet_clbk_d(ootx_decoder_context *ct, ootx_packet* packet)
{
	struct SurviveContext * ctx = (struct SurviveContext*)(ct->user);
	struct SurviveCalData * cd = ctx->calptr;
	int id = ct->user1;

	SV_INFO( "Got OOTX packet %d %p", id, cd );

	lighthouse_info_v6 v6;
	init_lighthouse_info_v6(&v6, packet->data);

	struct BaseStationData * b = &ctx->bsd[id];
	//print_lighthouse_info_v6(&v6);

	b->BaseStationID = v6.id;
	b->fcalphase[0] = v6.fcal_0_phase;
	b->fcalphase[1] = v6.fcal_1_phase;
	b->fcaltilt[0] = tan(v6.fcal_0_tilt);
	b->fcaltilt[1] = tan(v6.fcal_1_tilt);  //XXX??? Is this right? See https://github.com/cnlohr/libsurvive/issues/18
	b->fcalcurve[0] = v6.fcal_0_curve;
	b->fcalcurve[1] = v6.fcal_1_curve;
	b->fcalgibpha[0] = v6.fcal_0_gibphase;
	b->fcalgibpha[1] = v6.fcal_1_gibphase;
	b->fcalgibmag[0] = v6.fcal_0_gibmag;
	b->fcalgibmag[1] = v6.fcal_1_gibmag;
	b->OOTXSet = 1;
}

int survive_cal_get_status( struct SurviveContext * ctx, char * description, int description_length )
{
	struct SurviveCalData * cd = ctx->calptr;

	switch( cd->stage )
	{
	case 0:
		return snprintf( description, description_length, "0 Not calibrating" );
	case 1:
		return snprintf( description, description_length, "1 Collecting OOTX Data (%d:%d)", cd->ootx_decoders[0].buf_offset, cd->ootx_decoders[1].buf_offset );
	case 2:
	case 3:
		if( cd->found_common )
		{
			return snprintf( description, description_length, "%d Collecting Sweep Data %d/%d", cd->stage, cd->peak_counts, DRPTS );
		}
		else
		{
			return snprintf( description, description_length, "%d Searching for common watchman cal %d/%d (%d/%d)", cd->stage, cd->peak_counts, PTS_BEFORE_COMMON, cd->times_found_common, NEEDED_TIMES_OF_COMMON );
		}

	case 5:
		return snprintf( description, description_length, "%d LH Find complete.", cd->stage );

	case 4:
	default:
		return snprintf( description, description_length, "%d Unkown calibration state", cd->stage );
	}
}

void survive_cal_install( struct SurviveContext * ctx )
{
	int i;
	struct SurviveCalData * cd = ctx->calptr = calloc( 1, sizeof( struct SurviveCalData ) );

	for( i = 0; i < NUM_LIGHTHOUSES; i++ )
	{
		ootx_init_decoder_context(&cd->ootx_decoders[i]);
		cd->ootx_decoders[i].user = ctx;
		cd->ootx_decoders[i].user1 = i;
	}

	cd->stage = 1;
	cd->ctx = ctx;

	cd->hmd = survive_get_so_by_name( ctx, "HMD" );
	if( !cd->hmd )
	{
		SV_ERROR( "Error: cannot find any devices labeled HMD. Required for calibration" );
		free( cd );
		return;
	}

	ootx_packet_clbk = ootx_packet_clbk_d;

	ctx->calptr = cd;
}


void survive_cal_light( struct SurviveObject * so, int sensor_id, int acode, int timeinsweep, uint32_t timecode, uint32_t length  )
{
	struct SurviveContext * ctx = so->ctx;
	struct SurviveCalData * cd = ctx->calptr;

	if( !cd ) return;

	switch( cd->stage )
	{
	default:
	case 0: //Default, inactive.
		break;

	case 1:
		//Collecting OOTX data.
		if( sensor_id < 0 )
		{
			int lhid = -sensor_id-1;
			if( lhid < NUM_LIGHTHOUSES && so->codename[0] == 'H' )
			{
				uint8_t dbit = (acode & 2)>>1;
				ootx_pump_bit( &cd->ootx_decoders[lhid], dbit );
			}
			int i;
			for( i = 0; i < NUM_LIGHTHOUSES; i++ )
				if( ctx->bsd[i].OOTXSet == 0 ) break;
			if( i == NUM_LIGHTHOUSES ) cd->stage = 2;  //If all lighthouses have their OOTX set, move on.
		}
		break;
	case 2:      //Taking in angle data.
		break;
	}
}

void survive_cal_angle( struct SurviveObject * so, int sensor_id, int acode, uint32_t timecode, FLT length, FLT angle )
{
	struct SurviveContext * ctx = so->ctx;
	struct SurviveCalData * cd = ctx->calptr;

	if( !cd ) return;

	int sensid = sensor_id;
	if( strcmp( so->codename, "WM0" ) == 0 )
		sensid += 32;
	if( strcmp( so->codename, "WM1" ) == 0 )
		sensid += 64;

	if( sensid >= MAX_SENSORS_TO_CAL || sensid < 0 ) return;

	int lighthouse = acode>>2;
	int axis = acode & 1;

	switch( cd->stage )
	{
	default:
	case 1:	//Collecting OOTX data. (Don't do anything here, yet.)
	case 0: //Default, inactive.
		break;
	case 2:
	{
		int ct = cd->all_counts[sensid][lighthouse][axis]++;
		cd->all_lengths[sensid][lighthouse][axis][ct] = length;
		cd->all_angles[sensid][lighthouse][axis][ct] = angle;
		if( ct > cd->peak_counts )
		{
			cd->peak_counts = ct;
		}

		//Determine if there is a sensor on a watchman visible from both lighthouses.
		if( sensid >= 32 )
		{
			int k;
			int ok = 1;
			for( k = 0; k < NUM_LIGHTHOUSES; k++ )
			{
				if( cd->all_counts[sensid][k][0] < NEEDED_COMMON_POINTS || cd->all_counts[sensid][k][1] < NEEDED_COMMON_POINTS )
				{
					ok = 0;
					break;
				}
			}
			if( ok ) cd->found_common = 1;
		}

		if( cd->peak_counts >= PTS_BEFORE_COMMON )
		{
			int tfc = cd->times_found_common;
			if( cd->found_common )
			{
				if( tfc >= NEEDED_TIMES_OF_COMMON )
				{
					SV_INFO( "Stage 2 moving to stage 3. %d %d %d", cd->peak_counts, cd->found_common, tfc );
					reset_calibration( cd );
					cd->stage = 3;
					cd->found_common = 1;
				}
				else
				{
					SV_INFO( "Stage 2 good - continuing. %d %d %d", cd->peak_counts, cd->found_common, tfc );
					reset_calibration( cd );
					cd->times_found_common = tfc+1;
				}
			}
			else
			{
				SV_INFO( "Stage 2 bad - redoing. %d %d %d", cd->peak_counts, cd->found_common, tfc );
				reset_calibration( cd );
				cd->times_found_common = 0;
			}
		}			

		break;
	}
	case 3:
	{
		int ct = cd->all_counts[sensid][lighthouse][axis]++;
		cd->all_lengths[sensid][lighthouse][axis][ct] = length;
		cd->all_angles[sensid][lighthouse][axis][ct] = angle;
		if( ct > cd->peak_counts )
		{
			cd->peak_counts = ct;
			if( ct >= DRPTS )
				handle_calibration( cd ); //This must also reset all cals.
		}
		break;
	}
	}
}

static void reset_calibration( struct SurviveCalData * cd )
{
	memset( cd->all_counts, 0, sizeof( cd->all_counts ) );
	cd->peak_counts = 0;
	cd->found_common = 0;
	cd->times_found_common = 0;
	cd->stage = 2;
}

static void handle_calibration( struct SurviveCalData *cd )
{
	struct SurviveContext * ctx = cd->ctx;

	#define MAX_CAL_PT_DAT (MAX_SENSORS_TO_CAL*NUM_LIGHTHOUSES*2)

/*
	FLT avgsweeps[MAX_CAL_PT_DAT];
	FLT avglens[MAX_CAL_PT_DAT];
	FLT stdsweeps[MAX_CAL_PT_DAT];
	FLT stdlens[MAX_CAL_PT_DAT];
	int ctsweeps[MAX_CAL_PT_DAT];
*/

	memset( cd->ctsweeps, 0, sizeof( cd->ctsweeps ) );

	//Either advance to stage 4 or go resetting will go back to stage 2.
	//What is stage 4?  Are we done then?

	mkdir( "calinfo", 0755 );
	FILE * hists = fopen( "calinfo/histograms.csv", "w" );
	FILE * ptinfo = fopen( "calinfo/ptinfo.csv", "w" );
	int sen, axis, lh;
	for( sen = 0; sen < MAX_SENSORS_TO_CAL; sen++ )
	for( lh = 0; lh < NUM_LIGHTHOUSES; lh++ )
	for( axis = 0; axis < 2; axis++ )
	{
		int dpmax = cd->all_counts[sen][lh][axis];
		if( dpmax < 50 ) continue;
		int i;

		FLT sumsweepangle = 0;
		FLT sumlentime = 0;

		//Find initial guess at average
		for( i = 0; i < dpmax; i++ )
		{
			FLT sweepangle = cd->all_angles[sen][lh][axis][i];
			FLT datalen = cd->all_lengths[sen][lh][axis][i];
			sumsweepangle += sweepangle;
			sumlentime += datalen;
		}

		#define OUTLIER_ANGLE   0.001	//TODO: Tune
		#define OUTLIER_LENGTH	0.001	//TODO: Tune
		#define ANGLE_STDEV_TOO_HIGH 0.000001 //TODO: Tune

		FLT avgsweep = sumsweepangle / dpmax;
		FLT avglen = sumlentime / dpmax;
		int count = 0;

		FLT max_outlier_angle = 0;
		FLT max_outlier_length = 0;

		//Get rid of outliers
		for( i = 0; i < dpmax; i++ )
		{
			FLT sweepangle = cd->all_angles[sen][lh][axis][i];
			FLT datalen = cd->all_lengths[sen][lh][axis][i];
			FLT Sdiff = sweepangle - avgsweep;
			FLT Ldiff = datalen - avglen;
			FLT Sdiff2 = Sdiff * Sdiff;
			FLT Ldiff2 = Ldiff * Ldiff;

			if( Sdiff2 > max_outlier_angle ) max_outlier_angle = Sdiff2;
			if( Ldiff2 > max_outlier_length ) max_outlier_length = Ldiff2;

			if( Sdiff2 > OUTLIER_ANGLE || Ldiff2 > OUTLIER_LENGTH )
			{
				cd->all_lengths[sen][lh][axis][i] = -1;
			}
			else
			{
				count++;
			}
		}

		if( count < DRPTS_NEEDED_FOR_AVG )
		{
			printf( "DPAVG %d\n", count );
			//Not enough for this point to be considered.
			continue;
		}

		sumsweepangle = 0;
		sumlentime = 0;
		//Redo, finding new average:
		for( i = 0; i < dpmax; i++ )
		{
			FLT sweepangle = cd->all_angles[sen][lh][axis][i];
			FLT datalen = cd->all_lengths[sen][lh][axis][i];
			if( datalen < 0 ) continue;
			sumsweepangle += sweepangle;
			sumlentime += datalen;
		}

		avgsweep = sumsweepangle / count;
		avglen = sumlentime / count;

		FLT stddevang = 0;
		FLT stddevlen = 0;

		#define HISTOGRAMSIZE   31
		#define HISTOGRAMBINANG 0.00001  //TODO: Tune

		int histo[HISTOGRAMSIZE];
		memset( histo, 0, sizeof( histo ) );

		for( i = 0; i < dpmax; i++ )
		{
			FLT sweepangle = cd->all_angles[sen][lh][axis][i];
			FLT datalen = cd->all_lengths[sen][lh][axis][i];
			if( datalen < 0 ) continue;

			FLT Sdiff = sweepangle - avgsweep;
			FLT Ldiff = datalen - avglen;
			FLT Sdiff2 = Sdiff * Sdiff;
			FLT Ldiff2 = Ldiff * Ldiff;

			stddevang += Sdiff2;
			stddevlen += Ldiff2;

			int llm = Sdiff / HISTOGRAMBINANG + (HISTOGRAMSIZE/2.0);
			if( llm < 0 ) llm = 0;
			if( llm >= HISTOGRAMSIZE ) llm = HISTOGRAMSIZE-1;

			histo[llm]++;
		}

		stddevang /= count;
		stddevlen /= count;

		if( stddevang > ANGLE_STDEV_TOO_HIGH )
		{
			SV_INFO( "DROPPED: %02d:%d:%d dropped because stddev (%f) was too high.", sen, lh, axis, stddevang );
			continue;
		}

		fprintf( hists, "%02d_%d_%d, ", sen, lh, axis );

		for( i = 0; i < HISTOGRAMSIZE; i++ )
		{
			fprintf( hists, "%d ", histo[i] );
		}
		fprintf( hists, "\n" );

		fprintf( ptinfo, "%d %d %d %d %f %f %f %f %f %f\n", sen, lh, axis, count, avgsweep, avglen*1000000, stddevang*1000000000, stddevlen*1000000000, max_outlier_length*1000000000, max_outlier_angle*1000000000 );

		int dataindex = sen*(2*NUM_LIGHTHOUSES)+lh*2+axis;
		cd->avgsweeps[dataindex] = avgsweep;
		cd->avglens[dataindex] = avglen;
		cd->stdsweeps[dataindex] = stddevang;
		cd->stdlens[dataindex] = stddevlen;
		cd->ctsweeps[dataindex] = count;
	}
	fclose( hists );
	fclose( ptinfo );

	//Comb through data and make sure we still have a sensor on a WM that 
	int bcp_senid = 0;
	int bcp_count = 0;
	for( sen = 0; sen < MAX_SENSORS_TO_CAL; sen++ )
	{
		int ct0 = cd->ctsweeps[sen*4+0];
		int ct1 = cd->ctsweeps[sen*4+0];
		int ct2 = cd->ctsweeps[sen*4+0];
		int ct3 = cd->ctsweeps[sen*4+0];

		if( ct0 > ct1 ) ct0 = ct1;
		if( ct0 > ct2 ) ct0 = ct2;
		if( ct0 > ct3 ) ct0 = ct3;

		if( ct0 > bcp_count ) { bcp_count = ct0; bcp_senid = sen; }
	}

	if( bcp_count < DRPTS_NEEDED_FOR_AVG )
	{
		SV_INFO( "Stage 3 could not find a suitable common point on a watchman" );
		reset_calibration( cd );
		return;
	}

	cd->senid_of_checkpt = bcp_senid;

	if( survive_cal_lhfind( cd ) == 0 )
	{
		SV_INFO( "Stage 4 succeeded." );
		cd->stage = 5;
	}
	else
	{
		SV_INFO( "Stage 4 failed." );
		reset_calibration( cd );
	}
}