// (C) 2016 Joshua Allen, MIT/x11 License. // //All MIT/x11 Licensed Code in this file may be relicensed freely under the GPL or LGPL licenses. /* ootx data decoder */ #include #include #include #include #include "ootx_decoder.h" //#include "crc32.h" //char* fmt_str = "L Y HMD %d 5 1 206230 %d\n"; #define MAX_BUFF_SIZE 1024 void (*ootx_packet_clbk)(ootx_packet* packet) = NULL; void ootx_pump_bit(ootx_decoder_context *ctx, uint8_t dbit); void ootx_init_decoder_context(ootx_decoder_context *ctx) { ctx->buf_offset = 0; ctx->bits_written = 0; ctx->preamble = 0XFFFFFFFF; ctx->bits_processed = 0; ctx->found_preamble = 0; ctx->buffer = (uint8_t*)malloc(MAX_BUFF_SIZE); ctx->payload_size = (uint16_t*)ctx->buffer; *(ctx->payload_size) = 0; } /* void ootx_init_buffer() { buffer = (uint8_t*)malloc(MAX_BUFF_SIZE); payload_size = (uint16_t*)buffer; *payload_size = 0; } */ /* how to decode pulses ticks>2000 && delta>100000== master lighthouse ticks>2000 && delta>10000 == slave lighthouse */ int8_t ootx_decode_lighthouse_number(uint8_t last_num, uint32_t ticks, int32_t delta) { if (ticks<2000) return -1; //sweep if (delta>100000) return 0; //master if (delta>10000) return 1; //a slave return -1; } uint8_t decode_internal(uint32_t length) { uint16_t temp = length - 2880; // printf #if BETTER_SAFE_THAN_FAST if (temp < 0 || length > 6525) { return -1; } #endif if ((temp % 500) < 150) { return temp / 500; } return -1; } uint8_t ootx_decode_bit(uint32_t length) { length = ((length/500)*500)+500; length-=3000; if (length>=2000) { length-=2000; } if (length>=1000) { return 0xFF; } return 0x00; } /* uint8_t ootx_decode_bit(uint32_t ticks) { int8_t bits = decode_internal(ticks); return bits&0x02; } */ /* void ootx_accumulate_bit(ootx_decoder_context *ctx, uint32_t ticks) { uint8_t dbit = ootx_decode_bit(ticks); // printf("%d\n\n", dbit); ctx->bit_count[(dbit&0x01)]++; // printf("%d %d %d\n", dbit, ctx->bit_count[0], ctx->bit_count[1]); } */ void ootx_accumulate_bit(ootx_decoder_context *ctx, uint8_t bit) { ctx->bit_count[bit&0x01]++; } uint8_t ootx_pump_greatest_bit(ootx_decoder_context *ctx) { //pump the bit uint8_t bit = 0x00; if (ctx->bit_count[0] < ctx->bit_count[1]) bit = 0xFF; // printf("pump %d\n", bit); ootx_pump_bit( ctx, bit ); ctx->bit_count[0] = 0; ctx->bit_count[1] = 0; return bit; } uint8_t ootx_detect_preamble(ootx_decoder_context *ctx, uint8_t dbit) { ctx->preamble <<= 1; ctx->preamble |= (0x01 & dbit); if ((ctx->preamble & 0x0003ffff) == 0x00000001) return 1; return 0; } void ootx_reset_buffer(ootx_decoder_context *ctx) { ctx->buf_offset = 0; ctx->buffer[ctx->buf_offset] = 0; ctx->bits_written = 0; *(ctx->payload_size) = 0; } void ootx_inc_buffer_offset(ootx_decoder_context *ctx) { ++(ctx->buf_offset); // assert(ctx->buf_offsetbuf_offset>=MAX_BUFF_SIZE) { ctx->buf_offset = 0; ctx->found_preamble = 0; } ctx->buffer[ctx->buf_offset] = 0; } void ootx_write_to_buffer(ootx_decoder_context *ctx, uint8_t dbit) { uint8_t *current_byte = ctx->buffer + ctx->buf_offset; // printf("%d\n", dbit); // *current_byte >>= 1; // *current_byte |= (0x80 & dbit); *current_byte <<= 1; *current_byte |= (0x01 & dbit); ++(ctx->bits_written); if (ctx->bits_written>7) { ctx->bits_written=0; // printf("%d\n", *current_byte); ootx_inc_buffer_offset(ctx); } } void ootx_process_bit(ootx_decoder_context *ctx, uint32_t length) { int8_t dbit = ootx_decode_bit(length); ootx_pump_bit( ctx, dbit ); } void print_crc32(uint32_t crc) { // uint8_t* p = (uint32_t*)&crc; // uint8_t i = 0; printf("%X\n", crc); } void write_to_file(uint8_t *d, uint16_t length){ FILE *fp = fopen("binary.data","w"); fwrite(d, length, 1, fp); fclose(fp); } void ootx_pump_bit(ootx_decoder_context *ctx, uint8_t dbit) { // uint8_t dbit = ootx_decode_bit(length); ++(ctx->bits_processed); // printf("z %d %d\n", bits_processed,dbit); // printf("d %d\n", bits_processed,dbit); if ( ootx_detect_preamble(ctx, dbit) ) { /* data stream can start over at any time so we must always look for preamble bits */ printf("Preamble found\n"); ootx_reset_buffer(ctx); ctx->bits_processed = 0; ctx->found_preamble = 1; } else if(ctx->bits_processed>16) { //every 17th bit needs to be dropped (sync bit) // printf("drop %d\n", dbit); ctx->bits_processed = 0; } else if (ctx->found_preamble > 0) { /* only write to buffer if the preamble is found. if the buffer overflows, found_preamble will be cleared and writing will stop. data would be corrupted, so there is no point in continuing */ ootx_write_to_buffer(ctx, dbit); uint16_t padded_length = *(ctx->payload_size); padded_length += (padded_length&0x01); //extra null byte if odd if (ctx->buf_offset >= (padded_length+6)) { /* once we have a complete ootx packet, send it out in the callback */ ootx_packet op; op.length = *(ctx->payload_size); op.data = ctx->buffer+2; op.crc32 = *(uint32_t*)(op.data+padded_length); uint32_t crc = crc32( 0L, Z_NULL, 0 ); crc = crc32( crc, op.data,op.length); // uint32_t crc = crc32(0xffffffff,op.data,op.length); if (crc != op.crc32) { printf("CRC mismatch\n"); /* printf("r:"); print_crc32(op.crc32); printf("c:"); print_crc32(crc); // write_to_file(op.data,op.length); */ } if ((crc == op.crc32) && ootx_packet_clbk) ootx_packet_clbk(&op); ootx_reset_buffer(ctx); } } } uint8_t* get_ptr(uint8_t* data, uint8_t bytes, uint16_t* idx) { uint8_t* x = data + *idx; *idx += bytes; return x; } float _to_float(uint8_t* data) { uint16_t h = *(uint16_t*)(data); uint16_t h_exp, h_sig; uint32_t f_sgn, f_exp, f_sig; h_exp = (h&0x7c00u); f_sgn = ((uint32_t)h&0x8000u) << 16; if (h_exp == 0x0000u) { /* 0 or subnormal */ h_sig = (h&0x03ffu); /* Signed zero */ if (h_sig == 0) { return f_sgn; } /* Subnormal */ h_sig <<= 1; while ((h_sig&0x0400u) == 0) { h_sig <<= 1; h_exp++; } f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23; f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13; return f_sgn + f_exp + f_sig; } else if (h_exp == 0x7c00u) { /* inf or NaN */ /* All-ones exponent and a copy of the significand */ return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13); } else { /* normalized */ /* Just need to adjust the exponent and shift */ return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13); } } void init_lighthouse_info_v6(lighthouse_info_v6* lhi, uint8_t* data) { uint16_t idx = 0; /* uint16_t fw_version;//Firmware version (bit 15..6), protocol version (bit 5..0) uint32_t id; //Unique identifier of the base station float fcal_0_phase; //"phase" for rotor 0 float fcal_1_phase; //"phase" for rotor 1 float fcal_0_tilt; //"tilt" for rotor 0 float fcal_1_tilt; //"tilt" for rotor 1 uint8_t sys_unlock_count; //Lowest 8 bits of the rotor desynchronization counter uint8_t hw_version; //Hardware version float fcal_0_curve; //"curve" for rotor 0 float fcal_1_curve; //"curve" for rotor 1 int8_t accel_dir_x; //"orientation vector" int8_t accel_dir_y; //"orientation vector" int8_t accel_dir_z; //"orientation vector" float fcal_0_gibphase; //"gibbous phase" for rotor 0 (normalized angle) float fcal_1_gibphase; //"gibbous phase" for rotor 1 (normalized angle) float fcal_0_gibmag; //"gibbous magnitude" for rotor 0 float fcal_1_gibmag; //"gibbous magnitude" for rotor 1 uint8_t mode_current; //Currently selected mode (default: 0=A, 1=B, 2=C) uint8_t sys_faults; //"fault detect flags" (should be 0) */ lhi->fw_version = *(uint16_t*)get_ptr(data,2,&idx); lhi->id = *(uint32_t*)get_ptr(data,4,&idx); lhi->fcal_0_phase = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_1_phase = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_0_tilt = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_1_tilt = _to_float( get_ptr(data,2,&idx) ); lhi->sys_unlock_count = *get_ptr(data,1,&idx); lhi->hw_version = *get_ptr(data,1,&idx); lhi->fcal_0_curve = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_1_curve = _to_float( get_ptr(data,2,&idx) ); lhi->accel_dir_x = *(int8_t*)get_ptr(data,1,&idx); lhi->accel_dir_y = *(int8_t*)get_ptr(data,1,&idx); lhi->accel_dir_z = *(int8_t*)get_ptr(data,1,&idx); lhi->fcal_0_gibphase = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_1_gibphase = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_0_gibmag = _to_float( get_ptr(data,2,&idx) ); lhi->fcal_1_gibmag = _to_float( get_ptr(data,2,&idx) ); lhi->mode_current = *get_ptr(data,1,&idx); lhi->sys_faults = *get_ptr(data,1,&idx); } void print_lighthouse_info_v6(lighthouse_info_v6* lhi) { printf("\t%X\n\t%X\n\t%f\n\t%f\n\t%f\n\t%f\n\t%d\n\t%d\n\t%f\n\t%f\n\t%d\n\t%d\n\t%d\n\t%f\n\t%f\n\t%f\n\t%f\n\t%d\n\t%d\n", lhi->fw_version, lhi->id, lhi->fcal_0_phase, lhi->fcal_1_phase, lhi->fcal_0_tilt, lhi->fcal_1_tilt, lhi->sys_unlock_count, lhi->hw_version, lhi->fcal_0_curve, lhi->fcal_1_curve, lhi->accel_dir_x, lhi->accel_dir_y, lhi->accel_dir_z, lhi->fcal_0_gibphase, lhi->fcal_1_gibphase, lhi->fcal_0_gibmag, lhi->fcal_1_gibmag, lhi->mode_current, lhi->sys_faults); }