#include #include #include "find_tori_math.h" // TODO: optimization potential to do in-place inverse for some places where this is used. Matrix3x3 inverseM33(const Matrix3x3 mat) { Matrix3x3 newMat; for (int a = 0; a < 3; a++) { for (int b = 0; b < 3; b++) { newMat.val[a][b] = mat.val[a][b]; } } for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 3; j++) { double tmp = newMat.val[i][j]; newMat.val[i][j] = newMat.val[j][i]; newMat.val[j][i] = tmp; } } return newMat; } double distance(Point a, Point b) { double x = a.x - b.x; double y = a.y - b.y; double z = a.z - b.z; return sqrt(x*x + y*y + z*z); } //################################### // The following code originally came from // http://stackoverflow.com/questions/23166898/efficient-way-to-calculate-a-3x3-rotation-matrix-from-the-rotation-defined-by-tw // Need to check up on license terms and give proper attribution // I think we'll be good with proper attribution, but don't want to assume without checking. /* -------------------------------------------------------------------- */ /* Math Lib declarations */ /* -------------------------------------------------------------------- */ /* Main function */ /** * Calculate a rotation matrix from 2 normalized vectors. * * v1 and v2 must be unit length. */ void rotation_between_vecs_to_mat3(double m[3][3], const double v1[3], const double v2[3]) { double axis[3]; /* avoid calculating the angle */ double angle_sin; double angle_cos; cross_v3_v3v3(axis, v1, v2); angle_sin = normalize_v3(axis); angle_cos = dot_v3v3(v1, v2); if (angle_sin > FLT_EPSILON) { axis_calc: axis_angle_normalized_to_mat3_ex(m, axis, angle_sin, angle_cos); } else { /* Degenerate (co-linear) vectors */ if (angle_cos > 0.0f) { /* Same vectors, zero rotation... */ unit_m3(m); } else { /* Colinear but opposed vectors, 180 rotation... */ ortho_v3_v3(axis, v1); normalize_v3(axis); angle_sin = 0.0f; /* sin(M_PI) */ angle_cos = -1.0f; /* cos(M_PI) */ goto axis_calc; } } } /* -------------------------------------------------------------------- */ /* Math Lib */ void unit_m3(double m[3][3]) { m[0][0] = m[1][1] = m[2][2] = 1.0; m[0][1] = m[0][2] = 0.0; m[1][0] = m[1][2] = 0.0; m[2][0] = m[2][1] = 0.0; } double dot_v3v3(const double a[3], const double b[3]) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } void cross_v3_v3v3(double r[3], const double a[3], const double b[3]) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; } void mul_v3_v3fl(double r[3], const double a[3], double f) { r[0] = a[0] * f; r[1] = a[1] * f; r[2] = a[2] * f; } double normalize_v3_v3(double r[3], const double a[3]) { double d = dot_v3v3(a, a); if (d > 1.0e-35f) { d = sqrtf((float)d); mul_v3_v3fl(r, a, 1.0f / d); } else { d = r[0] = r[1] = r[2] = 0.0f; } return d; } double normalize_v3(double n[3]) { return normalize_v3_v3(n, n); } int axis_dominant_v3_single(const double vec[3]) { const float x = fabsf((float)vec[0]); const float y = fabsf((float)vec[1]); const float z = fabsf((float)vec[2]); return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2)); } void ortho_v3_v3(double p[3], const double v[3]) { const int axis = axis_dominant_v3_single(v); switch (axis) { case 0: p[0] = -v[1] - v[2]; p[1] = v[0]; p[2] = v[0]; break; case 1: p[0] = v[1]; p[1] = -v[0] - v[2]; p[2] = v[1]; break; case 2: p[0] = v[2]; p[1] = v[2]; p[2] = -v[0] - v[1]; break; } } /* axis must be unit length */ void axis_angle_normalized_to_mat3_ex( double mat[3][3], const double axis[3], const double angle_sin, const double angle_cos) { double nsi[3], ico; double n_00, n_01, n_11, n_02, n_12, n_22; ico = (1.0f - angle_cos); nsi[0] = axis[0] * angle_sin; nsi[1] = axis[1] * angle_sin; nsi[2] = axis[2] * angle_sin; n_00 = (axis[0] * axis[0]) * ico; n_01 = (axis[0] * axis[1]) * ico; n_11 = (axis[1] * axis[1]) * ico; n_02 = (axis[0] * axis[2]) * ico; n_12 = (axis[1] * axis[2]) * ico; n_22 = (axis[2] * axis[2]) * ico; mat[0][0] = n_00 + angle_cos; mat[0][1] = n_01 + nsi[2]; mat[0][2] = n_02 - nsi[1]; mat[1][0] = n_01 - nsi[2]; mat[1][1] = n_11 + angle_cos; mat[1][2] = n_12 + nsi[0]; mat[2][0] = n_02 + nsi[1]; mat[2][1] = n_12 - nsi[0]; mat[2][2] = n_22 + angle_cos; }