// Driver works, but you _must_ start it near the origin looking in +Z. #include #include #include #include "epnp/epnp.h" #include "linmath.h" #include "survive_cal.h" #include #include #include #include #include #define MAX_PT_PER_SWEEP 32 typedef struct { int sweepaxis; int sweeplh; FLT normal_at_errors[MAX_PT_PER_SWEEP][3]; // Value is actually normalized, not just normal to sweep plane. FLT quantity_errors[MAX_PT_PER_SWEEP]; FLT angles_at_pts[MAX_PT_PER_SWEEP]; SurvivePose object_pose_at_hit[MAX_PT_PER_SWEEP]; uint8_t sensor_ids[MAX_PT_PER_SWEEP]; int ptsweep; SurviveIMUTracker tracker; } CharlesPoserData; int PoserCharlesRefine(SurviveObject *so, PoserData *pd) { CharlesPoserData *dd = so->PoserData; if (!dd) so->PoserData = dd = calloc(sizeof(CharlesPoserData), 1); SurviveSensorActivations *scene = &so->activations; switch (pd->pt) { case POSERDATA_IMU: { // Really should use this... PoserDataIMU *imu = (PoserDataIMU *)pd; survive_imu_tracker_integrate(so, &dd->tracker, imu); PoserData_poser_pose_func(pd, so, &dd->tracker.pose); return 0; } case POSERDATA_LIGHT: { int i; PoserDataLight *ld = (PoserDataLight *)pd; int lhid = ld->lh; int senid = ld->sensor_id; BaseStationData *bsd = &so->ctx->bsd[ld->lh]; if (!bsd->PositionSet) break; SurvivePose *lhp = &bsd->Pose; FLT angle = ld->angle; int sensor_id = ld->sensor_id; int axis = dd->sweepaxis; const SurvivePose *object_pose = &so->OutPose; dd->sweeplh = lhid; // FOR NOW, drop LH1. // if( lhid == 1 ) break; // const FLT * sensor_normal = &so->sensor_normals[senid*3]; // FLT sensor_normal_worldspace[3]; // ApplyPoseToPoint(sensor_normal_worldspace, object_pose, sensor_inpos); const FLT *sensor_inpos = &so->sensor_locations[senid * 3]; FLT sensor_position_worldspace[3]; // XXX Once I saw this get pretty wild (When in playback) // I had to invert the values of sensor_inpos. Not sure why. ApplyPoseToPoint(sensor_position_worldspace, object_pose, sensor_inpos); // printf( "%f %f %f == > %f %f %f\n", sensor_inpos[0], sensor_inpos[1], sensor_inpos[2], // sensor_position_worldspace[0], sensor_position_worldspace[1], sensor_position_worldspace[2] ); // = sensor position, relative to lighthouse center. FLT sensorpos_rel_lh[3]; sub3d(sensorpos_rel_lh, sensor_position_worldspace, lhp->Pos); // Next, define a normal in global space of the plane created by the sweep hit. // Careful that this must be normalized. FLT sweep_normal[3]; // If 1, the "y" axis. //XXX Check me. if (axis) // XXX Just FYI this should include account for skew { sweep_normal[0] = 0; sweep_normal[1] = cos(angle); sweep_normal[2] = sin(angle); // printf( "+" ); } else { sweep_normal[0] = cos(angle); sweep_normal[1] = 0; sweep_normal[2] = -sin(angle); // printf( "-" ); } // Need to apply the lighthouse's transformation to the sweep's normal. quatrotatevector(sweep_normal, lhp->Rot, sweep_normal); // Compute point-line distance between sensorpos_rel_lh and the plane defined by sweep_normal. // Do this by projecting sensorpos_rel_lh (w) onto sweep_normal (v). // You can do this by |v dot w| / |v| ... But we know |v| is 1. So... FLT dist = dot3d(sensorpos_rel_lh, sweep_normal); if ((i = dd->ptsweep) < MAX_PT_PER_SWEEP) { memcpy(dd->normal_at_errors[i], sweep_normal, sizeof(FLT) * 3); dd->quantity_errors[i] = dist; dd->angles_at_pts[i] = angle; dd->sensor_ids[i] = sensor_id; memcpy(&dd->object_pose_at_hit[i], object_pose, sizeof(SurvivePose)); dd->ptsweep++; } return 0; } case POSERDATA_SYNC: { PoserDataLight *l = (PoserDataLight *)pd; int lhid = l->lh; // you can get sweepaxis and sweeplh. if (dd->ptsweep) { int i; int lhid = dd->sweeplh; int axis = dd->sweepaxis; int pts = dd->ptsweep; const SurvivePose *object_pose = &so->OutPose; // XXX TODO Should pull pose from approximate time when LHs were scanning it. BaseStationData *bsd = &so->ctx->bsd[lhid]; SurvivePose *lh_pose = &bsd->Pose; int validpoints = 0; int ptvalid[MAX_PT_PER_SWEEP]; FLT avgerr = 0.0; FLT vec_correct[3] = {0., 0., 0.}; FLT avgang = 0.0; // Tunable parameters: #define MIN_HIT_QUALITY 0.5 // Determines which hits to cull. #define HIT_QUALITY_BASELINE \ 0.0001 // Determines which hits to cull. Actually SQRT(baseline) if 0.0001, it is really 1cm #define CORRECT_LATERAL_POSITION_COEFFICIENT 0.8 // Explodes if you exceed 1.0 #define CORRECT_TELESCOPTION_COEFFICIENT 8.0 // Converges even as high as 10.0 and doesn't explode. #define CORRECT_ROTATION_COEFFICIENT \ 1.0 // This starts to fall apart above 5.0, but for good reason. It is amplified by the number of points seen. #define ROTATIONAL_CORRECTION_MAXFORCE 0.10 // Step 1: Determine standard of deviation, and average in order to // drop points that are likely in error. { // Calculate average FLT avgerr_orig = 0.0; FLT stddevsq = 0.0; for (i = 0; i < pts; i++) avgerr_orig += dd->quantity_errors[i]; avgerr_orig /= pts; // Calculate standard of deviation. for (i = 0; i < pts; i++) { FLT diff = dd->quantity_errors[i] - avgerr_orig; stddevsq += diff * diff; } stddevsq /= pts; for (i = 0; i < pts; i++) { FLT err = dd->quantity_errors[i]; FLT diff = err - avgerr_orig; diff *= diff; int isptvalid = (diff * MIN_HIT_QUALITY <= stddevsq + HIT_QUALITY_BASELINE) ? 1 : 0; ptvalid[i] = isptvalid; if (isptvalid) { avgang += dd->angles_at_pts[i]; avgerr += err; validpoints++; } } avgang /= validpoints; avgerr /= validpoints; } // Step 2: Determine average lateral error. // We can actually always perform this operation. Even with only one point. { FLT avg_err[3] = {0, 0, 0}; // Positional error. for (i = 0; i < pts; i++) { if (!ptvalid[i]) continue; FLT *nrm = dd->normal_at_errors[i]; FLT err = dd->quantity_errors[i]; avg_err[0] = avg_err[0] + nrm[0] * err; avg_err[1] = avg_err[1] + nrm[1] * err; avg_err[2] = avg_err[2] + nrm[2] * err; } // NOTE: The "avg_err" is not geometrically centered. This is actually // probably okay, since if you have sevearl data points to one side, you // can probably trust that more. scale3d(avg_err, avg_err, 1. / validpoints); // We have "Average error" now. A vector in worldspace. // This can correct for lateral error, but not distance from camera. // XXX TODO: Should we check to see if we only have one or // two points to make sure the error on this isn't unusually high? // If calculated error is unexpectedly high, then we should probably // Not apply the transform. scale3d(avg_err, avg_err, -CORRECT_LATERAL_POSITION_COEFFICIENT); add3d(vec_correct, vec_correct, avg_err); } // Step 3: Control telecoption from lighthouse. // we need to find out what the weighting is to determine "zoom" if (validpoints > 1) // Can't correct "zoom" with only one point. { FLT zoom = 0.0; FLT rmsang = 0.0; for (i = 0; i < pts; i++) { if (!ptvalid[i]) continue; FLT delang = dd->angles_at_pts[i] - avgang; FLT delerr = dd->quantity_errors[i] - avgerr; if (axis) delang *= -1; // Flip sign on alternate axis because it's measured backwards. zoom += delerr * delang; rmsang += delang * delang; } // Control into or outof lighthouse. // XXX Check to see if we need to sqrt( the rmsang), need to check convergance behavior close to // lighthouse. // This is a questionable step. zoom /= sqrt(rmsang); zoom *= CORRECT_TELESCOPTION_COEFFICIENT; FLT veccamalong[3]; sub3d(veccamalong, lh_pose->Pos, object_pose->Pos); normalize3d(veccamalong, veccamalong); scale3d(veccamalong, veccamalong, zoom); add3d(vec_correct, veccamalong, vec_correct); } SurvivePose object_pose_out; add3d(object_pose_out.Pos, vec_correct, object_pose->Pos); quatcopy(object_pose_out.Rot, object_pose->Rot); // Stage 4: "Tug" on the rotation of the object, from all of the sensor's pov. // If we were able to determine likliehood of a hit in the sweep instead of afterward // we would actually be able to perform this on a per-hit basis. if (1) { LinmathQuat correction; quatcopy(correction, LinmathQuat_Identity); for (i = 0; i < pts; i++) { if (!ptvalid[i]) continue; FLT dist = dd->quantity_errors[i] - avgerr; FLT angle = dd->angles_at_pts[i]; int sensor_id = dd->sensor_ids[i]; FLT *normal = dd->normal_at_errors[i]; const SurvivePose *object_pose_at_hit = &dd->object_pose_at_hit[i]; const FLT *sensor_inpos = &so->sensor_locations[sensor_id * 3]; LinmathQuat world_to_object_space; quatgetreciprocal(world_to_object_space, object_pose_at_hit->Rot); FLT correction_in_object_space[3]; // The amount across the surface of the object the rotation // should happen. quatrotatevector(correction_in_object_space, world_to_object_space, normal); dist *= CORRECT_ROTATION_COEFFICIENT; if (dist > ROTATIONAL_CORRECTION_MAXFORCE) dist = ROTATIONAL_CORRECTION_MAXFORCE; if (dist < -ROTATIONAL_CORRECTION_MAXFORCE) dist = -ROTATIONAL_CORRECTION_MAXFORCE; // Now, we have a "tug" vector in object-local space. Need to apply the torque. FLT vector_from_center_of_object[3]; normalize3d(vector_from_center_of_object, sensor_inpos); // scale3d(vector_from_center_of_object, sensor_inpos, 10.0 ); // vector_from_center_of_object[2]*=-1; // vector_from_center_of_object[1]*=-1; // vector_from_center_of_object[0]*=-1; // vector_from_center_of_object scale3d(vector_from_center_of_object, vector_from_center_of_object, 1); FLT new_vector_in_object_space[3]; // printf( "%f %f %f %f\n", object_pose_at_hit->Rot[0], object_pose_at_hit->Rot[1], // object_pose_at_hit->Rot[2], object_pose_at_hit->Rot[3] ); // printf( "%f %f %f // %f %f %f // %f\n", vector_from_center_of_object[0], // vector_from_center_of_object[1], vector_from_center_of_object[2], correction_in_object_space[0], // correction_in_object_space[1], correction_in_object_space[2], dist ); scale3d(correction_in_object_space, correction_in_object_space, -dist); add3d(new_vector_in_object_space, vector_from_center_of_object, correction_in_object_space); normalize3d(new_vector_in_object_space, new_vector_in_object_space); LinmathQuat corrective_quaternion; quatfrom2vectors(corrective_quaternion, vector_from_center_of_object, new_vector_in_object_space); quatrotateabout(correction, correction, corrective_quaternion); // printf( "%f -> %f %f %f => %f %f %f [%f %f %f %f]\n", dist, vector_from_center_of_object[0], // vector_from_center_of_object[1], vector_from_center_of_object[2], // correction_in_object_space[0], correction_in_object_space[1], correction_in_object_space[2], // corrective_quaternion[0],corrective_quaternion[1],corrective_quaternion[1],corrective_quaternion[3]); } // printf( "Applying: %f %f %f %f\n", correction[0], correction[1], correction[2], correction[3] ); // Apply our corrective quaternion to the output. quatrotateabout(object_pose_out.Rot, object_pose_out.Rot, correction); quatnormalize(object_pose_out.Rot, object_pose_out.Rot); } // Janky need to do this somewhere else... This initializes the pose estimator. if (so->PoseConfidence < .01) { memcpy(&object_pose_out, &LinmathPose_Identity, sizeof(LinmathPose_Identity)); so->PoseConfidence = 1.0; } // PoserData_poser_pose_func(pd, so, &object_pose_out); FLT var_meters = 0.5; FLT error = 0.0001; FLT var_quat = error + .05; FLT var[7] = {error * var_meters, error * var_meters, error * var_meters, error * var_quat, error * var_quat, error * var_quat, error * var_quat}; survive_imu_tracker_integrate_observation(so, l->timecode, &dd->tracker, &object_pose_out, var); PoserData_poser_pose_func(pd, so, &dd->tracker.pose); dd->ptsweep = 0; } dd->sweepaxis = l->acode & 1; // printf( "SYNC %d %p\n", l->acode, dd ); break; } case POSERDATA_FULL_SCENE: { // return opencv_solver_fullscene(so, (PoserDataFullScene *)(pd)); } } return -1; } REGISTER_LINKTIME(PoserCharlesRefine);