/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_CORE_TYPES_H #define OPENCV_CORE_TYPES_H #ifdef HAVE_IPL #ifndef __IPL_H__ #if defined _WIN32 #include #else #include #endif #endif #elif defined __IPL_H__ #define HAVE_IPL #endif #include "opencv2/core/cvdef.h" #ifndef SKIP_INCLUDES #include #include #include #include #endif // SKIP_INCLUDES #if defined _WIN32 #define CV_CDECL __cdecl #define CV_STDCALL __stdcall #else #define CV_CDECL #define CV_STDCALL #endif #ifndef CV_DEFAULT #ifdef __cplusplus #define CV_DEFAULT(val) = val #else #define CV_DEFAULT(val) #endif #endif #ifndef CV_EXTERN_C_FUNCPTR #ifdef __cplusplus #define CV_EXTERN_C_FUNCPTR(x) \ extern "C" { \ typedef x; \ } #else #define CV_EXTERN_C_FUNCPTR(x) typedef x #endif #endif #ifndef CVAPI #define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL #endif #ifndef CV_IMPL #define CV_IMPL CV_EXTERN_C #endif #ifdef __cplusplus #include "opencv2/core.hpp" #endif /** @addtogroup core_c @{ */ /** @brief This is the "metatype" used *only* as a function parameter. It denotes that the function accepts arrays of multiple types, such as IplImage*, CvMat* or even CvSeq* sometimes. The particular array type is determined at runtime by analyzing the first 4 bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray. */ typedef void CvArr; typedef int CVStatus; /** @see cv::Error::Code */ enum { CV_StsOk = 0, /**< everything is ok */ CV_StsBackTrace = -1, /**< pseudo error for back trace */ CV_StsError = -2, /**< unknown /unspecified error */ CV_StsInternal = -3, /**< internal error (bad state) */ CV_StsNoMem = -4, /**< insufficient memory */ CV_StsBadArg = -5, /**< function arg/param is bad */ CV_StsBadFunc = -6, /**< unsupported function */ CV_StsNoConv = -7, /**< iter. didn't converge */ CV_StsAutoTrace = -8, /**< tracing */ CV_HeaderIsNull = -9, /**< image header is NULL */ CV_BadImageSize = -10, /**< image size is invalid */ CV_BadOffset = -11, /**< offset is invalid */ CV_BadDataPtr = -12, /**/ CV_BadStep = -13, /**< image step is wrong, this may happen for a non-continuous matrix */ CV_BadModelOrChSeq = -14, /**/ CV_BadNumChannels = -15, /**< bad number of channels, for example, some functions accept only single channel matrices */ CV_BadNumChannel1U = -16, /**/ CV_BadDepth = -17, /**< input image depth is not supported by the function */ CV_BadAlphaChannel = -18, /**/ CV_BadOrder = -19, /**< number of dimensions is out of range */ CV_BadOrigin = -20, /**< incorrect input origin */ CV_BadAlign = -21, /**< incorrect input align */ CV_BadCallBack = -22, /**/ CV_BadTileSize = -23, /**/ CV_BadCOI = -24, /**< input COI is not supported */ CV_BadROISize = -25, /**< incorrect input roi */ CV_MaskIsTiled = -26, /**/ CV_StsNullPtr = -27, /**< null pointer */ CV_StsVecLengthErr = -28, /**< incorrect vector length */ CV_StsFilterStructContentErr = -29, /**< incorrect filter structure content */ CV_StsKernelStructContentErr = -30, /**< incorrect transform kernel content */ CV_StsFilterOffsetErr = -31, /**< incorrect filter offset value */ CV_StsBadSize = -201, /**< the input/output structure size is incorrect */ CV_StsDivByZero = -202, /**< division by zero */ CV_StsInplaceNotSupported = -203, /**< in-place operation is not supported */ CV_StsObjectNotFound = -204, /**< request can't be completed */ CV_StsUnmatchedFormats = -205, /**< formats of input/output arrays differ */ CV_StsBadFlag = -206, /**< flag is wrong or not supported */ CV_StsBadPoint = -207, /**< bad CvPoint */ CV_StsBadMask = -208, /**< bad format of mask (neither 8uC1 nor 8sC1)*/ CV_StsUnmatchedSizes = -209, /**< sizes of input/output structures do not match */ CV_StsUnsupportedFormat = -210, /**< the data format/type is not supported by the function*/ CV_StsOutOfRange = -211, /**< some of parameters are out of range */ CV_StsParseError = -212, /**< invalid syntax/structure of the parsed file */ CV_StsNotImplemented = -213, /**< the requested function/feature is not implemented */ CV_StsBadMemBlock = -214, /**< an allocated block has been corrupted */ CV_StsAssert = -215, /**< assertion failed */ CV_GpuNotSupported = -216, /**< no CUDA support */ CV_GpuApiCallError = -217, /**< GPU API call error */ CV_OpenGlNotSupported = -218, /**< no OpenGL support */ CV_OpenGlApiCallError = -219, /**< OpenGL API call error */ CV_OpenCLApiCallError = -220, /**< OpenCL API call error */ CV_OpenCLDoubleNotSupported = -221, CV_OpenCLInitError = -222, /**< OpenCL initialization error */ CV_OpenCLNoAMDBlasFft = -223 }; /****************************************************************************************\ * Common macros and inline functions * \****************************************************************************************/ #define CV_SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t)) /** min & max without jumps */ #define CV_IMIN(a, b) ((a) ^ (((a) ^ (b)) & (((a) < (b)) - 1))) #define CV_IMAX(a, b) ((a) ^ (((a) ^ (b)) & (((a) > (b)) - 1))) /** absolute value without jumps */ #ifndef __cplusplus #define CV_IABS(a) (((a) ^ ((a) < 0 ? -1 : 0)) - ((a) < 0 ? -1 : 0)) #else #define CV_IABS(a) abs(a) #endif #define CV_CMP(a, b) (((a) > (b)) - ((a) < (b))) #define CV_SIGN(a) CV_CMP((a), 0) #define cvInvSqrt(value) ((float)(1. / sqrt(value))) #define cvSqrt(value) ((float)sqrt(value)) /*************** Random number generation *******************/ typedef uint64 CvRNG; #define CV_RNG_COEFF 4164903690U /** @brief Initializes a random number generator state. The function initializes a random number generator and returns the state. The pointer to the state can be then passed to the cvRandInt, cvRandReal and cvRandArr functions. In the current implementation a multiply-with-carry generator is used. @param seed 64-bit value used to initiate a random sequence @sa the C++ class RNG replaced CvRNG. */ CV_INLINE CvRNG cvRNG(int64 seed CV_DEFAULT(-1)) { CvRNG rng = seed ? (uint64)seed : (uint64)(int64)-1; return rng; } /** @brief Returns a 32-bit unsigned integer and updates RNG. The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG state. It is similar to the rand() function from the C runtime library, except that OpenCV functions always generates a 32-bit random number, regardless of the platform. @param rng CvRNG state initialized by cvRNG. */ CV_INLINE unsigned cvRandInt(CvRNG *rng) { uint64 temp = *rng; temp = (uint64)(unsigned)temp * CV_RNG_COEFF + (temp >> 32); *rng = temp; return (unsigned)temp; } /** @brief Returns a floating-point random number and updates RNG. The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not included). @param rng RNG state initialized by cvRNG */ CV_INLINE double cvRandReal(CvRNG *rng) { return cvRandInt(rng) * 2.3283064365386962890625e-10 /* 2^-32 */; } /****************************************************************************************\ * Image type (IplImage) * \****************************************************************************************/ #ifndef HAVE_IPL /* * The following definitions (until #endif) * is an extract from IPL headers. * Copyright (c) 1995 Intel Corporation. */ #define IPL_DEPTH_SIGN 0x80000000 #define IPL_DEPTH_1U 1 #define IPL_DEPTH_8U 8 #define IPL_DEPTH_16U 16 #define IPL_DEPTH_32F 32 #define IPL_DEPTH_8S (IPL_DEPTH_SIGN | 8) #define IPL_DEPTH_16S (IPL_DEPTH_SIGN | 16) #define IPL_DEPTH_32S (IPL_DEPTH_SIGN | 32) #define IPL_DATA_ORDER_PIXEL 0 #define IPL_DATA_ORDER_PLANE 1 #define IPL_ORIGIN_TL 0 #define IPL_ORIGIN_BL 1 #define IPL_ALIGN_4BYTES 4 #define IPL_ALIGN_8BYTES 8 #define IPL_ALIGN_16BYTES 16 #define IPL_ALIGN_32BYTES 32 #define IPL_ALIGN_DWORD IPL_ALIGN_4BYTES #define IPL_ALIGN_QWORD IPL_ALIGN_8BYTES #define IPL_BORDER_CONSTANT 0 #define IPL_BORDER_REPLICATE 1 #define IPL_BORDER_REFLECT 2 #define IPL_BORDER_WRAP 3 /** The IplImage is taken from the Intel Image Processing Library, in which the format is native. OpenCV only supports a subset of possible IplImage formats, as outlined in the parameter list above. In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require that the image size or ROI size of all source and destination images match exactly. On the other hand, the Intel Image Processing Library processes the area of intersection between the source and destination images (or ROIs), allowing them to vary independently. */ typedef struct #ifdef __cplusplus CV_EXPORTS #endif _IplImage { int nSize; /**< sizeof(IplImage) */ int ID; /**< version (=0)*/ int nChannels; /**< Most of OpenCV functions support 1,2,3 or 4 channels */ int alphaChannel; /**< Ignored by OpenCV */ int depth; /**< Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported. */ char colorModel[4]; /**< Ignored by OpenCV */ char channelSeq[4]; /**< ditto */ int dataOrder; /**< 0 - interleaved color channels, 1 - separate color channels. cvCreateImage can only create interleaved images */ int origin; /**< 0 - top-left origin, 1 - bottom-left origin (Windows bitmaps style). */ int align; /**< Alignment of image rows (4 or 8). OpenCV ignores it and uses widthStep instead. */ int width; /**< Image width in pixels. */ int height; /**< Image height in pixels. */ struct _IplROI *roi; /**< Image ROI. If NULL, the whole image is selected. */ struct _IplImage *maskROI; /**< Must be NULL. */ void *imageId; /**< " " */ struct _IplTileInfo *tileInfo; /**< " " */ int imageSize; /**< Image data size in bytes (==image->height*image->widthStep in case of interleaved data)*/ char *imageData; /**< Pointer to aligned image data. */ int widthStep; /**< Size of aligned image row in bytes. */ int BorderMode[4]; /**< Ignored by OpenCV. */ int BorderConst[4]; /**< Ditto. */ char *imageDataOrigin; /**< Pointer to very origin of image data (not necessarily aligned) - needed for correct deallocation */ #ifdef __cplusplus _IplImage() {} _IplImage(const cv::Mat &m); #endif } IplImage; typedef struct _IplTileInfo IplTileInfo; typedef struct _IplROI { int coi; /**< 0 - no COI (all channels are selected), 1 - 0th channel is selected ...*/ int xOffset; int yOffset; int width; int height; } IplROI; typedef struct _IplConvKernel { int nCols; int nRows; int anchorX; int anchorY; int *values; int nShiftR; } IplConvKernel; typedef struct _IplConvKernelFP { int nCols; int nRows; int anchorX; int anchorY; float *values; } IplConvKernelFP; #define IPL_IMAGE_HEADER 1 #define IPL_IMAGE_DATA 2 #define IPL_IMAGE_ROI 4 #endif /*HAVE_IPL*/ /** extra border mode */ #define IPL_BORDER_REFLECT_101 4 #define IPL_BORDER_TRANSPARENT 5 #define IPL_IMAGE_MAGIC_VAL ((int)sizeof(IplImage)) #define CV_TYPE_NAME_IMAGE "opencv-image" #define CV_IS_IMAGE_HDR(img) ((img) != NULL && ((const IplImage *)(img))->nSize == sizeof(IplImage)) #define CV_IS_IMAGE(img) (CV_IS_IMAGE_HDR(img) && ((IplImage *)img)->imageData != NULL) /** for storing double-precision floating point data in IplImage's */ #define IPL_DEPTH_64F 64 /** get reference to pixel at (col,row), for multi-channel images (col) should be multiplied by number of channels */ #define CV_IMAGE_ELEM(image, elemtype, row, col) \ (((elemtype *)((image)->imageData + (image)->widthStep * (row)))[(col)]) /****************************************************************************************\ * Matrix type (CvMat) * \****************************************************************************************/ #define CV_AUTO_STEP 0x7fffffff #define CV_WHOLE_ARR cvSlice(0, 0x3fffffff) #define CV_MAGIC_MASK 0xFFFF0000 #define CV_MAT_MAGIC_VAL 0x42420000 #define CV_TYPE_NAME_MAT "opencv-matrix" /** Matrix elements are stored row by row. Element (i, j) (i - 0-based row index, j - 0-based column index) of a matrix can be retrieved or modified using CV_MAT_ELEM macro: uchar pixval = CV_MAT_ELEM(grayimg, uchar, i, j) CV_MAT_ELEM(cameraMatrix, float, 0, 2) = image.width*0.5f; To access multiple-channel matrices, you can use CV_MAT_ELEM(matrix, type, i, j\*nchannels + channel_idx). @deprecated CvMat is now obsolete; consider using Mat instead. */ typedef struct CvMat { int type; int step; /* for internal use only */ int *refcount; int hdr_refcount; union { uchar *ptr; short *s; int *i; float *fl; double *db; } data; #ifdef __cplusplus union { int rows; int height; }; union { int cols; int width; }; #else int rows; int cols; #endif #ifdef __cplusplus CvMat() {} CvMat(const CvMat &m) { memcpy(this, &m, sizeof(CvMat)); } CvMat(const cv::Mat &m); #endif } CvMat; #define CV_IS_MAT_HDR(mat) \ ((mat) != NULL && (((const CvMat *)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ ((const CvMat *)(mat))->cols > 0 && ((const CvMat *)(mat))->rows > 0) #define CV_IS_MAT_HDR_Z(mat) \ ((mat) != NULL && (((const CvMat *)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ ((const CvMat *)(mat))->cols >= 0 && ((const CvMat *)(mat))->rows >= 0) #define CV_IS_MAT(mat) (CV_IS_MAT_HDR(mat) && ((const CvMat *)(mat))->data.ptr != NULL) #define CV_IS_MASK_ARR(mat) (((mat)->type & (CV_MAT_TYPE_MASK & ~CV_8SC1)) == 0) #define CV_ARE_TYPES_EQ(mat1, mat2) ((((mat1)->type ^ (mat2)->type) & CV_MAT_TYPE_MASK) == 0) #define CV_ARE_CNS_EQ(mat1, mat2) ((((mat1)->type ^ (mat2)->type) & CV_MAT_CN_MASK) == 0) #define CV_ARE_DEPTHS_EQ(mat1, mat2) ((((mat1)->type ^ (mat2)->type) & CV_MAT_DEPTH_MASK) == 0) #define CV_ARE_SIZES_EQ(mat1, mat2) ((mat1)->rows == (mat2)->rows && (mat1)->cols == (mat2)->cols) #define CV_IS_MAT_CONST(mat) (((mat)->rows | (mat)->cols) == 1) #define IPL2CV_DEPTH(depth) \ ((((CV_8U) + (CV_16U << 4) + (CV_32F << 8) + (CV_64F << 16) + (CV_8S << 20) + (CV_16S << 24) + (CV_32S << 28)) >> \ ((((depth)&0xF0) >> 2) + (((depth)&IPL_DEPTH_SIGN) ? 20 : 0))) & \ 15) /** Inline constructor. No data is allocated internally!!! * (Use together with cvCreateData, or use cvCreateMat instead to * get a matrix with allocated data): */ CV_INLINE CvMat cvMat(int rows, int cols, int type, void *data CV_DEFAULT(NULL)) { CvMat m; assert((unsigned)CV_MAT_DEPTH(type) <= CV_64F); type = CV_MAT_TYPE(type); m.type = CV_MAT_MAGIC_VAL | CV_MAT_CONT_FLAG | type; m.cols = cols; m.rows = rows; m.step = m.cols * CV_ELEM_SIZE(type); m.data.ptr = (uchar *)data; m.refcount = NULL; m.hdr_refcount = 0; return m; } #ifdef __cplusplus inline CvMat::CvMat(const cv::Mat &m) { CV_DbgAssert(m.dims <= 2); *this = cvMat(m.rows, m.dims == 1 ? 1 : m.cols, m.type(), m.data); step = (int)m.step[0]; type = (type & ~cv::Mat::CONTINUOUS_FLAG) | (m.flags & cv::Mat::CONTINUOUS_FLAG); } #endif #define CV_MAT_ELEM_PTR_FAST(mat, row, col, pix_size) \ (assert((unsigned)(row) < (unsigned)(mat).rows && (unsigned)(col) < (unsigned)(mat).cols), \ (mat).data.ptr + (size_t)(mat).step * (row) + (pix_size) * (col)) #define CV_MAT_ELEM_PTR(mat, row, col) CV_MAT_ELEM_PTR_FAST(mat, row, col, CV_ELEM_SIZE((mat).type)) #define CV_MAT_ELEM(mat, elemtype, row, col) (*(elemtype *)CV_MAT_ELEM_PTR_FAST(mat, row, col, sizeof(elemtype))) /** @brief Returns the particular element of single-channel floating-point matrix. The function is a fast replacement for cvGetReal2D in the case of single-channel floating-point matrices. It is faster because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column ranges only in debug mode. @param mat Input matrix @param row The zero-based index of row @param col The zero-based index of column */ CV_INLINE double cvmGet(const CvMat *mat, int row, int col) { int type; type = CV_MAT_TYPE(mat->type); assert((unsigned)row < (unsigned)mat->rows && (unsigned)col < (unsigned)mat->cols); if (type == CV_32FC1) return ((float *)(void *)(mat->data.ptr + (size_t)mat->step * row))[col]; else { assert(type == CV_64FC1); return ((double *)(void *)(mat->data.ptr + (size_t)mat->step * row))[col]; } } /** @brief Sets a specific element of a single-channel floating-point matrix. The function is a fast replacement for cvSetReal2D in the case of single-channel floating-point matrices. It is faster because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column ranges only in debug mode. @param mat The matrix @param row The zero-based index of row @param col The zero-based index of column @param value The new value of the matrix element */ CV_INLINE void cvmSet(CvMat *mat, int row, int col, double value) { int type; type = CV_MAT_TYPE(mat->type); assert((unsigned)row < (unsigned)mat->rows && (unsigned)col < (unsigned)mat->cols); if (type == CV_32FC1) ((float *)(void *)(mat->data.ptr + (size_t)mat->step * row))[col] = (float)value; else { assert(type == CV_64FC1); ((double *)(void *)(mat->data.ptr + (size_t)mat->step * row))[col] = value; } } CV_INLINE int cvIplDepth(int type) { int depth = CV_MAT_DEPTH(type); return CV_ELEM_SIZE1(depth) * 8 | (depth == CV_8S || depth == CV_16S || depth == CV_32S ? IPL_DEPTH_SIGN : 0); } /****************************************************************************************\ * Multi-dimensional dense array (CvMatND) * \****************************************************************************************/ #define CV_MATND_MAGIC_VAL 0x42430000 #define CV_TYPE_NAME_MATND "opencv-nd-matrix" #define CV_MAX_DIM 32 #define CV_MAX_DIM_HEAP 1024 /** @deprecated consider using cv::Mat instead */ typedef struct #ifdef __cplusplus CV_EXPORTS #endif CvMatND { int type; int dims; int *refcount; int hdr_refcount; union { uchar *ptr; float *fl; double *db; int *i; short *s; } data; struct { int size; int step; } dim[CV_MAX_DIM]; #ifdef __cplusplus CvMatND() {} CvMatND(const cv::Mat &m); #endif } CvMatND; #define CV_IS_MATND_HDR(mat) ((mat) != NULL && (((const CvMatND *)(mat))->type & CV_MAGIC_MASK) == CV_MATND_MAGIC_VAL) #define CV_IS_MATND(mat) (CV_IS_MATND_HDR(mat) && ((const CvMatND *)(mat))->data.ptr != NULL) /****************************************************************************************\ * Multi-dimensional sparse array (CvSparseMat) * \****************************************************************************************/ #define CV_SPARSE_MAT_MAGIC_VAL 0x42440000 #define CV_TYPE_NAME_SPARSE_MAT "opencv-sparse-matrix" struct CvSet; typedef struct #ifdef __cplusplus CV_EXPORTS #endif CvSparseMat { int type; int dims; int *refcount; int hdr_refcount; struct CvSet *heap; void **hashtable; int hashsize; int valoffset; int idxoffset; int size[CV_MAX_DIM]; #ifdef __cplusplus void copyToSparseMat(cv::SparseMat &m) const; #endif } CvSparseMat; #ifdef __cplusplus CV_EXPORTS CvSparseMat *cvCreateSparseMat(const cv::SparseMat &m); #endif #define CV_IS_SPARSE_MAT_HDR(mat) \ ((mat) != NULL && (((const CvSparseMat *)(mat))->type & CV_MAGIC_MASK) == CV_SPARSE_MAT_MAGIC_VAL) #define CV_IS_SPARSE_MAT(mat) CV_IS_SPARSE_MAT_HDR(mat) /**************** iteration through a sparse array *****************/ typedef struct CvSparseNode { unsigned hashval; struct CvSparseNode *next; } CvSparseNode; typedef struct CvSparseMatIterator { CvSparseMat *mat; CvSparseNode *node; int curidx; } CvSparseMatIterator; #define CV_NODE_VAL(mat, node) ((void *)((uchar *)(node) + (mat)->valoffset)) #define CV_NODE_IDX(mat, node) ((int *)((uchar *)(node) + (mat)->idxoffset)) /****************************************************************************************\ * Histogram * \****************************************************************************************/ typedef int CvHistType; #define CV_HIST_MAGIC_VAL 0x42450000 #define CV_HIST_UNIFORM_FLAG (1 << 10) /** indicates whether bin ranges are set already or not */ #define CV_HIST_RANGES_FLAG (1 << 11) #define CV_HIST_ARRAY 0 #define CV_HIST_SPARSE 1 #define CV_HIST_TREE CV_HIST_SPARSE /** should be used as a parameter only, it turns to CV_HIST_UNIFORM_FLAG of hist->type */ #define CV_HIST_UNIFORM 1 typedef struct CvHistogram { int type; CvArr *bins; float thresh[CV_MAX_DIM][2]; /**< For uniform histograms. */ float **thresh2; /**< For non-uniform histograms. */ CvMatND mat; /**< Embedded matrix header for array histograms. */ } CvHistogram; #define CV_IS_HIST(hist) \ ((hist) != NULL && (((CvHistogram *)(hist))->type & CV_MAGIC_MASK) == CV_HIST_MAGIC_VAL && (hist)->bins != NULL) #define CV_IS_UNIFORM_HIST(hist) (((hist)->type & CV_HIST_UNIFORM_FLAG) != 0) #define CV_IS_SPARSE_HIST(hist) CV_IS_SPARSE_MAT((hist)->bins) #define CV_HIST_HAS_RANGES(hist) (((hist)->type & CV_HIST_RANGES_FLAG) != 0) /****************************************************************************************\ * Other supplementary data type definitions * \****************************************************************************************/ /*************************************** CvRect *****************************************/ /** @sa Rect_ */ typedef struct CvRect { int x; int y; int width; int height; #ifdef __cplusplus CvRect(int _x = 0, int _y = 0, int w = 0, int h = 0) : x(_x), y(_y), width(w), height(h) {} template CvRect(const cv::Rect_<_Tp> &r) : x(cv::saturate_cast(r.x)), y(cv::saturate_cast(r.y)), width(cv::saturate_cast(r.width)), height(cv::saturate_cast(r.height)) {} template operator cv::Rect_<_Tp>() const { return cv::Rect_<_Tp>((_Tp)x, (_Tp)y, (_Tp)width, (_Tp)height); } #endif } CvRect; /** constructs CvRect structure. */ CV_INLINE CvRect cvRect(int x, int y, int width, int height) { CvRect r; r.x = x; r.y = y; r.width = width; r.height = height; return r; } CV_INLINE IplROI cvRectToROI(CvRect rect, int coi) { IplROI roi; roi.xOffset = rect.x; roi.yOffset = rect.y; roi.width = rect.width; roi.height = rect.height; roi.coi = coi; return roi; } CV_INLINE CvRect cvROIToRect(IplROI roi) { return cvRect(roi.xOffset, roi.yOffset, roi.width, roi.height); } /*********************************** CvTermCriteria *************************************/ #define CV_TERMCRIT_ITER 1 #define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER #define CV_TERMCRIT_EPS 2 /** @sa TermCriteria */ typedef struct CvTermCriteria { int type; /**< may be combination of CV_TERMCRIT_ITER CV_TERMCRIT_EPS */ int max_iter; double epsilon; #ifdef __cplusplus CvTermCriteria(int _type = 0, int _iter = 0, double _eps = 0) : type(_type), max_iter(_iter), epsilon(_eps) {} CvTermCriteria(const cv::TermCriteria &t) : type(t.type), max_iter(t.maxCount), epsilon(t.epsilon) {} operator cv::TermCriteria() const { return cv::TermCriteria(type, max_iter, epsilon); } #endif } CvTermCriteria; CV_INLINE CvTermCriteria cvTermCriteria(int type, int max_iter, double epsilon) { CvTermCriteria t; t.type = type; t.max_iter = max_iter; t.epsilon = (float)epsilon; return t; } /******************************* CvPoint and variants ***********************************/ typedef struct CvPoint { int x; int y; #ifdef __cplusplus CvPoint(int _x = 0, int _y = 0) : x(_x), y(_y) {} template CvPoint(const cv::Point_<_Tp> &pt) : x((int)pt.x), y((int)pt.y) {} template operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } #endif } CvPoint; /** constructs CvPoint structure. */ CV_INLINE CvPoint cvPoint(int x, int y) { CvPoint p; p.x = x; p.y = y; return p; } typedef struct CvPoint2D32f { float x; float y; #ifdef __cplusplus CvPoint2D32f(float _x = 0, float _y = 0) : x(_x), y(_y) {} template CvPoint2D32f(const cv::Point_<_Tp> &pt) : x((float)pt.x), y((float)pt.y) {} template operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } #endif } CvPoint2D32f; /** constructs CvPoint2D32f structure. */ CV_INLINE CvPoint2D32f cvPoint2D32f(double x, double y) { CvPoint2D32f p; p.x = (float)x; p.y = (float)y; return p; } /** converts CvPoint to CvPoint2D32f. */ CV_INLINE CvPoint2D32f cvPointTo32f(CvPoint point) { return cvPoint2D32f((float)point.x, (float)point.y); } /** converts CvPoint2D32f to CvPoint. */ CV_INLINE CvPoint cvPointFrom32f(CvPoint2D32f point) { CvPoint ipt; ipt.x = cvRound(point.x); ipt.y = cvRound(point.y); return ipt; } typedef struct CvPoint3D32f { float x; float y; float z; #ifdef __cplusplus CvPoint3D32f(float _x = 0, float _y = 0, float _z = 0) : x(_x), y(_y), z(_z) {} template CvPoint3D32f(const cv::Point3_<_Tp> &pt) : x((float)pt.x), y((float)pt.y), z((float)pt.z) {} template operator cv::Point3_<_Tp>() const { return cv::Point3_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y), cv::saturate_cast<_Tp>(z)); } #endif } CvPoint3D32f; /** constructs CvPoint3D32f structure. */ CV_INLINE CvPoint3D32f cvPoint3D32f(double x, double y, double z) { CvPoint3D32f p; p.x = (float)x; p.y = (float)y; p.z = (float)z; return p; } typedef struct CvPoint2D64f { double x; double y; } CvPoint2D64f; /** constructs CvPoint2D64f structure.*/ CV_INLINE CvPoint2D64f cvPoint2D64f(double x, double y) { CvPoint2D64f p; p.x = x; p.y = y; return p; } typedef struct CvPoint3D64f { double x; double y; double z; } CvPoint3D64f; /** constructs CvPoint3D64f structure. */ CV_INLINE CvPoint3D64f cvPoint3D64f(double x, double y, double z) { CvPoint3D64f p; p.x = x; p.y = y; p.z = z; return p; } /******************************** CvSize's & CvBox **************************************/ typedef struct CvSize { int width; int height; #ifdef __cplusplus CvSize(int w = 0, int h = 0) : width(w), height(h) {} template CvSize(const cv::Size_<_Tp> &sz) : width(cv::saturate_cast(sz.width)), height(cv::saturate_cast(sz.height)) {} template operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } #endif } CvSize; /** constructs CvSize structure. */ CV_INLINE CvSize cvSize(int width, int height) { CvSize s; s.width = width; s.height = height; return s; } typedef struct CvSize2D32f { float width; float height; #ifdef __cplusplus CvSize2D32f(float w = 0, float h = 0) : width(w), height(h) {} template CvSize2D32f(const cv::Size_<_Tp> &sz) : width(cv::saturate_cast(sz.width)), height(cv::saturate_cast(sz.height)) {} template operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } #endif } CvSize2D32f; /** constructs CvSize2D32f structure. */ CV_INLINE CvSize2D32f cvSize2D32f(double width, double height) { CvSize2D32f s; s.width = (float)width; s.height = (float)height; return s; } /** @sa RotatedRect */ typedef struct CvBox2D { CvPoint2D32f center; /**< Center of the box. */ CvSize2D32f size; /**< Box width and length. */ float angle; /**< Angle between the horizontal axis */ /**< and the first side (i.e. length) in degrees */ #ifdef __cplusplus CvBox2D(CvPoint2D32f c = CvPoint2D32f(), CvSize2D32f s = CvSize2D32f(), float a = 0) : center(c), size(s), angle(a) {} CvBox2D(const cv::RotatedRect &rr) : center(rr.center), size(rr.size), angle(rr.angle) {} operator cv::RotatedRect() const { return cv::RotatedRect(center, size, angle); } #endif } CvBox2D; /** Line iterator state: */ typedef struct CvLineIterator { /** Pointer to the current point: */ uchar *ptr; /* Bresenham algorithm state: */ int err; int plus_delta; int minus_delta; int plus_step; int minus_step; } CvLineIterator; /************************************* CvSlice ******************************************/ #define CV_WHOLE_SEQ_END_INDEX 0x3fffffff #define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX) typedef struct CvSlice { int start_index, end_index; #if defined(__cplusplus) && !defined(__CUDACC__) CvSlice(int start = 0, int end = 0) : start_index(start), end_index(end) {} CvSlice(const cv::Range &r) { *this = (r.start != INT_MIN && r.end != INT_MAX) ? CvSlice(r.start, r.end) : CvSlice(0, CV_WHOLE_SEQ_END_INDEX); } operator cv::Range() const { return (start_index == 0 && end_index == CV_WHOLE_SEQ_END_INDEX) ? cv::Range::all() : cv::Range(start_index, end_index); } #endif } CvSlice; CV_INLINE CvSlice cvSlice(int start, int end) { CvSlice slice; slice.start_index = start; slice.end_index = end; return slice; } /************************************* CvScalar *****************************************/ /** @sa Scalar_ */ typedef struct CvScalar { double val[4]; #ifdef __cplusplus CvScalar() {} CvScalar(double d0, double d1 = 0, double d2 = 0, double d3 = 0) { val[0] = d0; val[1] = d1; val[2] = d2; val[3] = d3; } template CvScalar(const cv::Scalar_<_Tp> &s) { val[0] = s.val[0]; val[1] = s.val[1]; val[2] = s.val[2]; val[3] = s.val[3]; } template operator cv::Scalar_<_Tp>() const { return cv::Scalar_<_Tp>(cv::saturate_cast<_Tp>(val[0]), cv::saturate_cast<_Tp>(val[1]), cv::saturate_cast<_Tp>(val[2]), cv::saturate_cast<_Tp>(val[3])); } template CvScalar(const cv::Vec<_Tp, cn> &v) { int i; for (i = 0; i < (cn < 4 ? cn : 4); i++) val[i] = v.val[i]; for (; i < 4; i++) val[i] = 0; } #endif } CvScalar; CV_INLINE CvScalar cvScalar(double val0, double val1 CV_DEFAULT(0), double val2 CV_DEFAULT(0), double val3 CV_DEFAULT(0)) { CvScalar scalar; scalar.val[0] = val0; scalar.val[1] = val1; scalar.val[2] = val2; scalar.val[3] = val3; return scalar; } CV_INLINE CvScalar cvRealScalar(double val0) { CvScalar scalar; scalar.val[0] = val0; scalar.val[1] = scalar.val[2] = scalar.val[3] = 0; return scalar; } CV_INLINE CvScalar cvScalarAll(double val0123) { CvScalar scalar; scalar.val[0] = val0123; scalar.val[1] = val0123; scalar.val[2] = val0123; scalar.val[3] = val0123; return scalar; } /****************************************************************************************\ * Dynamic Data structures * \****************************************************************************************/ /******************************** Memory storage ****************************************/ typedef struct CvMemBlock { struct CvMemBlock *prev; struct CvMemBlock *next; } CvMemBlock; #define CV_STORAGE_MAGIC_VAL 0x42890000 typedef struct CvMemStorage { int signature; CvMemBlock *bottom; /**< First allocated block. */ CvMemBlock *top; /**< Current memory block - top of the stack. */ struct CvMemStorage *parent; /**< We get new blocks from parent as needed. */ int block_size; /**< Block size. */ int free_space; /**< Remaining free space in current block. */ } CvMemStorage; #define CV_IS_STORAGE(storage) \ ((storage) != NULL && (((CvMemStorage *)(storage))->signature & CV_MAGIC_MASK) == CV_STORAGE_MAGIC_VAL) typedef struct CvMemStoragePos { CvMemBlock *top; int free_space; } CvMemStoragePos; /*********************************** Sequence *******************************************/ typedef struct CvSeqBlock { struct CvSeqBlock *prev; /**< Previous sequence block. */ struct CvSeqBlock *next; /**< Next sequence block. */ int start_index; /**< Index of the first element in the block + */ /**< sequence->first->start_index. */ int count; /**< Number of elements in the block. */ schar *data; /**< Pointer to the first element of the block. */ } CvSeqBlock; #define CV_TREE_NODE_FIELDS(node_type) \ int flags; /**< Miscellaneous flags. */ \ int header_size; /**< Size of sequence header. */ \ struct node_type *h_prev; /**< Previous sequence. */ \ struct node_type *h_next; /**< Next sequence. */ \ struct node_type *v_prev; /**< 2nd previous sequence. */ \ struct node_type *v_next /**< 2nd next sequence. */ /** Read/Write sequence. Elements can be dynamically inserted to or deleted from the sequence. */ #define CV_SEQUENCE_FIELDS() \ CV_TREE_NODE_FIELDS(CvSeq); \ int total; /**< Total number of elements. */ \ int elem_size; /**< Size of sequence element in bytes. */ \ schar *block_max; /**< Maximal bound of the last block. */ \ schar *ptr; /**< Current write pointer. */ \ int delta_elems; /**< Grow seq this many at a time. */ \ CvMemStorage *storage; /**< Where the seq is stored. */ \ CvSeqBlock *free_blocks; /**< Free blocks list. */ \ CvSeqBlock *first; /**< Pointer to the first sequence block. */ typedef struct CvSeq { CV_SEQUENCE_FIELDS() } CvSeq; #define CV_TYPE_NAME_SEQ "opencv-sequence" #define CV_TYPE_NAME_SEQ_TREE "opencv-sequence-tree" /*************************************** Set ********************************************/ /** @brief Set Order is not preserved. There can be gaps between sequence elements. After the element has been inserted it stays in the same place all the time. The MSB(most-significant or sign bit) of the first field (flags) is 0 iff the element exists. */ #define CV_SET_ELEM_FIELDS(elem_type) \ int flags; \ struct elem_type *next_free; typedef struct CvSetElem { CV_SET_ELEM_FIELDS(CvSetElem) } CvSetElem; #define CV_SET_FIELDS() \ CV_SEQUENCE_FIELDS() \ CvSetElem *free_elems; \ int active_count; typedef struct CvSet { CV_SET_FIELDS() } CvSet; #define CV_SET_ELEM_IDX_MASK ((1 << 26) - 1) #define CV_SET_ELEM_FREE_FLAG (1 << (sizeof(int) * 8 - 1)) /** Checks whether the element pointed by ptr belongs to a set or not */ #define CV_IS_SET_ELEM(ptr) (((CvSetElem *)(ptr))->flags >= 0) /************************************* Graph ********************************************/ /** @name Graph We represent a graph as a set of vertices. Vertices contain their adjacency lists (more exactly, pointers to first incoming or outcoming edge (or 0 if isolated vertex)). Edges are stored in another set. There is a singly-linked list of incoming/outcoming edges for each vertex. Each edge consists of: - Two pointers to the starting and ending vertices (vtx[0] and vtx[1] respectively). A graph may be oriented or not. In the latter case, edges between vertex i to vertex j are not distinguished during search operations. - Two pointers to next edges for the starting and ending vertices, where next[0] points to the next edge in the vtx[0] adjacency list and next[1] points to the next edge in the vtx[1] adjacency list. @see CvGraphEdge, CvGraphVtx, CvGraphVtx2D, CvGraph @{ */ #define CV_GRAPH_EDGE_FIELDS() \ int flags; \ float weight; \ struct CvGraphEdge *next[2]; \ struct CvGraphVtx *vtx[2]; #define CV_GRAPH_VERTEX_FIELDS() \ int flags; \ struct CvGraphEdge *first; typedef struct CvGraphEdge { CV_GRAPH_EDGE_FIELDS() } CvGraphEdge; typedef struct CvGraphVtx { CV_GRAPH_VERTEX_FIELDS() } CvGraphVtx; typedef struct CvGraphVtx2D { CV_GRAPH_VERTEX_FIELDS() CvPoint2D32f *ptr; } CvGraphVtx2D; /** Graph is "derived" from the set (this is set a of vertices) and includes another set (edges) */ #define CV_GRAPH_FIELDS() \ CV_SET_FIELDS() \ CvSet *edges; typedef struct CvGraph { CV_GRAPH_FIELDS() } CvGraph; #define CV_TYPE_NAME_GRAPH "opencv-graph" /** @} */ /*********************************** Chain/Contour *************************************/ typedef struct CvChain { CV_SEQUENCE_FIELDS() CvPoint origin; } CvChain; #define CV_CONTOUR_FIELDS() \ CV_SEQUENCE_FIELDS() \ CvRect rect; \ int color; \ int reserved[3]; typedef struct CvContour { CV_CONTOUR_FIELDS() } CvContour; typedef CvContour CvPoint2DSeq; /****************************************************************************************\ * Sequence types * \****************************************************************************************/ #define CV_SEQ_MAGIC_VAL 0x42990000 #define CV_IS_SEQ(seq) ((seq) != NULL && (((CvSeq *)(seq))->flags & CV_MAGIC_MASK) == CV_SEQ_MAGIC_VAL) #define CV_SET_MAGIC_VAL 0x42980000 #define CV_IS_SET(set) ((set) != NULL && (((CvSeq *)(set))->flags & CV_MAGIC_MASK) == CV_SET_MAGIC_VAL) #define CV_SEQ_ELTYPE_BITS 12 #define CV_SEQ_ELTYPE_MASK ((1 << CV_SEQ_ELTYPE_BITS) - 1) #define CV_SEQ_ELTYPE_POINT CV_32SC2 /**< (x,y) */ #define CV_SEQ_ELTYPE_CODE CV_8UC1 /**< freeman code: 0..7 */ #define CV_SEQ_ELTYPE_GENERIC 0 #define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 #define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /**< &(x,y) */ #define CV_SEQ_ELTYPE_INDEX CV_32SC1 /**< #(x,y) */ #define CV_SEQ_ELTYPE_GRAPH_EDGE 0 /**< &next_o, &next_d, &vtx_o, &vtx_d */ #define CV_SEQ_ELTYPE_GRAPH_VERTEX 0 /**< first_edge, &(x,y) */ #define CV_SEQ_ELTYPE_TRIAN_ATR 0 /**< vertex of the binary tree */ #define CV_SEQ_ELTYPE_CONNECTED_COMP 0 /**< connected component */ #define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /**< (x,y,z) */ #define CV_SEQ_KIND_BITS 2 #define CV_SEQ_KIND_MASK (((1 << CV_SEQ_KIND_BITS) - 1) << CV_SEQ_ELTYPE_BITS) /** types of sequences */ #define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS) #define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS) #define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS) /** types of sparse sequences (sets) */ #define CV_SEQ_KIND_GRAPH (1 << CV_SEQ_ELTYPE_BITS) #define CV_SEQ_KIND_SUBDIV2D (2 << CV_SEQ_ELTYPE_BITS) #define CV_SEQ_FLAG_SHIFT (CV_SEQ_KIND_BITS + CV_SEQ_ELTYPE_BITS) /** flags for curves */ #define CV_SEQ_FLAG_CLOSED (1 << CV_SEQ_FLAG_SHIFT) #define CV_SEQ_FLAG_SIMPLE (0 << CV_SEQ_FLAG_SHIFT) #define CV_SEQ_FLAG_CONVEX (0 << CV_SEQ_FLAG_SHIFT) #define CV_SEQ_FLAG_HOLE (2 << CV_SEQ_FLAG_SHIFT) /** flags for graphs */ #define CV_GRAPH_FLAG_ORIENTED (1 << CV_SEQ_FLAG_SHIFT) #define CV_GRAPH CV_SEQ_KIND_GRAPH #define CV_ORIENTED_GRAPH (CV_SEQ_KIND_GRAPH | CV_GRAPH_FLAG_ORIENTED) /** point sets */ #define CV_SEQ_POINT_SET (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_POINT) #define CV_SEQ_POINT3D_SET (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_POINT3D) #define CV_SEQ_POLYLINE (CV_SEQ_KIND_CURVE | CV_SEQ_ELTYPE_POINT) #define CV_SEQ_POLYGON (CV_SEQ_FLAG_CLOSED | CV_SEQ_POLYLINE) #define CV_SEQ_CONTOUR CV_SEQ_POLYGON #define CV_SEQ_SIMPLE_POLYGON (CV_SEQ_FLAG_SIMPLE | CV_SEQ_POLYGON) /** chain-coded curves */ #define CV_SEQ_CHAIN (CV_SEQ_KIND_CURVE | CV_SEQ_ELTYPE_CODE) #define CV_SEQ_CHAIN_CONTOUR (CV_SEQ_FLAG_CLOSED | CV_SEQ_CHAIN) /** binary tree for the contour */ #define CV_SEQ_POLYGON_TREE (CV_SEQ_KIND_BIN_TREE | CV_SEQ_ELTYPE_TRIAN_ATR) /** sequence of the connected components */ #define CV_SEQ_CONNECTED_COMP (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_CONNECTED_COMP) /** sequence of the integer numbers */ #define CV_SEQ_INDEX (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_INDEX) #define CV_SEQ_ELTYPE(seq) ((seq)->flags & CV_SEQ_ELTYPE_MASK) #define CV_SEQ_KIND(seq) ((seq)->flags & CV_SEQ_KIND_MASK) /** flag checking */ #define CV_IS_SEQ_INDEX(seq) ((CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_INDEX) && (CV_SEQ_KIND(seq) == CV_SEQ_KIND_GENERIC)) #define CV_IS_SEQ_CURVE(seq) (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE) #define CV_IS_SEQ_CLOSED(seq) (((seq)->flags & CV_SEQ_FLAG_CLOSED) != 0) #define CV_IS_SEQ_CONVEX(seq) 0 #define CV_IS_SEQ_HOLE(seq) (((seq)->flags & CV_SEQ_FLAG_HOLE) != 0) #define CV_IS_SEQ_SIMPLE(seq) 1 /** type checking macros */ #define CV_IS_SEQ_POINT_SET(seq) ((CV_SEQ_ELTYPE(seq) == CV_32SC2 || CV_SEQ_ELTYPE(seq) == CV_32FC2)) #define CV_IS_SEQ_POINT_SUBSET(seq) (CV_IS_SEQ_INDEX(seq) || CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_PPOINT) #define CV_IS_SEQ_POLYLINE(seq) (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && CV_IS_SEQ_POINT_SET(seq)) #define CV_IS_SEQ_POLYGON(seq) (CV_IS_SEQ_POLYLINE(seq) && CV_IS_SEQ_CLOSED(seq)) #define CV_IS_SEQ_CHAIN(seq) (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && (seq)->elem_size == 1) #define CV_IS_SEQ_CONTOUR(seq) (CV_IS_SEQ_CLOSED(seq) && (CV_IS_SEQ_POLYLINE(seq) || CV_IS_SEQ_CHAIN(seq))) #define CV_IS_SEQ_CHAIN_CONTOUR(seq) (CV_IS_SEQ_CHAIN(seq) && CV_IS_SEQ_CLOSED(seq)) #define CV_IS_SEQ_POLYGON_TREE(seq) \ (CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_TRIAN_ATR && CV_SEQ_KIND(seq) == CV_SEQ_KIND_BIN_TREE) #define CV_IS_GRAPH(seq) (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet *)(seq)) == CV_SEQ_KIND_GRAPH) #define CV_IS_GRAPH_ORIENTED(seq) (((seq)->flags & CV_GRAPH_FLAG_ORIENTED) != 0) #define CV_IS_SUBDIV2D(seq) (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet *)(seq)) == CV_SEQ_KIND_SUBDIV2D) /****************************************************************************************/ /* Sequence writer & reader */ /****************************************************************************************/ #define CV_SEQ_WRITER_FIELDS() \ int header_size; \ CvSeq *seq; /**< the sequence written */ \ CvSeqBlock *block; /**< current block */ \ schar *ptr; /**< pointer to free space */ \ schar *block_min; /**< pointer to the beginning of block*/ \ schar *block_max; /**< pointer to the end of block */ typedef struct CvSeqWriter { CV_SEQ_WRITER_FIELDS() } CvSeqWriter; #define CV_SEQ_READER_FIELDS() \ int header_size; \ CvSeq *seq; /**< sequence, beign read */ \ CvSeqBlock *block; /**< current block */ \ schar *ptr; /**< pointer to element be read next */ \ schar *block_min; /**< pointer to the beginning of block */ \ schar *block_max; /**< pointer to the end of block */ \ int delta_index; /**< = seq->first->start_index */ \ schar *prev_elem; /**< pointer to previous element */ typedef struct CvSeqReader { CV_SEQ_READER_FIELDS() } CvSeqReader; /****************************************************************************************/ /* Operations on sequences */ /****************************************************************************************/ #define CV_SEQ_ELEM(seq, elem_type, index) \ /** assert gives some guarantee that parameter is valid */ \ (assert(sizeof((seq)->first[0]) == sizeof(CvSeqBlock) && (seq)->elem_size == sizeof(elem_type)), \ (elem_type *)((seq)->first && (unsigned)index < (unsigned)((seq)->first->count) \ ? (seq)->first->data + (index) * sizeof(elem_type) \ : cvGetSeqElem((CvSeq *)(seq), (index)))) #define CV_GET_SEQ_ELEM(elem_type, seq, index) CV_SEQ_ELEM((seq), elem_type, (index)) /** Add element to sequence: */ #define CV_WRITE_SEQ_ELEM_VAR(elem_ptr, writer) \ { \ if ((writer).ptr >= (writer).block_max) { \ cvCreateSeqBlock(&writer); \ } \ memcpy((writer).ptr, elem_ptr, (writer).seq->elem_size); \ (writer).ptr += (writer).seq->elem_size; \ } #define CV_WRITE_SEQ_ELEM(elem, writer) \ { \ assert((writer).seq->elem_size == sizeof(elem)); \ if ((writer).ptr >= (writer).block_max) { \ cvCreateSeqBlock(&writer); \ } \ assert((writer).ptr <= (writer).block_max - sizeof(elem)); \ memcpy((writer).ptr, &(elem), sizeof(elem)); \ (writer).ptr += sizeof(elem); \ } /** Move reader position forward: */ #define CV_NEXT_SEQ_ELEM(elem_size, reader) \ { \ if (((reader).ptr += (elem_size)) >= (reader).block_max) { \ cvChangeSeqBlock(&(reader), 1); \ } \ } /** Move reader position backward: */ #define CV_PREV_SEQ_ELEM(elem_size, reader) \ { \ if (((reader).ptr -= (elem_size)) < (reader).block_min) { \ cvChangeSeqBlock(&(reader), -1); \ } \ } /** Read element and move read position forward: */ #define CV_READ_SEQ_ELEM(elem, reader) \ { \ assert((reader).seq->elem_size == sizeof(elem)); \ memcpy(&(elem), (reader).ptr, sizeof((elem))); \ CV_NEXT_SEQ_ELEM(sizeof(elem), reader) \ } /** Read element and move read position backward: */ #define CV_REV_READ_SEQ_ELEM(elem, reader) \ { \ assert((reader).seq->elem_size == sizeof(elem)); \ memcpy(&(elem), (reader).ptr, sizeof((elem))); \ CV_PREV_SEQ_ELEM(sizeof(elem), reader) \ } #define CV_READ_CHAIN_POINT(_pt, reader) \ { \ (_pt) = (reader).pt; \ if ((reader).ptr) { \ CV_READ_SEQ_ELEM((reader).code, (reader)); \ assert(((reader).code & ~7) == 0); \ (reader).pt.x += (reader).deltas[(int)(reader).code][0]; \ (reader).pt.y += (reader).deltas[(int)(reader).code][1]; \ } \ } #define CV_CURRENT_POINT(reader) (*((CvPoint *)((reader).ptr))) #define CV_PREV_POINT(reader) (*((CvPoint *)((reader).prev_elem))) #define CV_READ_EDGE(pt1, pt2, reader) \ { \ assert(sizeof(pt1) == sizeof(CvPoint) && sizeof(pt2) == sizeof(CvPoint) && \ reader.seq->elem_size == sizeof(CvPoint)); \ (pt1) = CV_PREV_POINT(reader); \ (pt2) = CV_CURRENT_POINT(reader); \ (reader).prev_elem = (reader).ptr; \ CV_NEXT_SEQ_ELEM(sizeof(CvPoint), (reader)); \ } /************ Graph macros ************/ /** Return next graph edge for given vertex: */ #define CV_NEXT_GRAPH_EDGE(edge, vertex) \ (assert((edge)->vtx[0] == (vertex) || (edge)->vtx[1] == (vertex)), (edge)->next[(edge)->vtx[1] == (vertex)]) /****************************************************************************************\ * Data structures for persistence (a.k.a serialization) functionality * \****************************************************************************************/ /** "black box" file storage */ typedef struct CvFileStorage CvFileStorage; /** Storage flags: */ #define CV_STORAGE_READ 0 #define CV_STORAGE_WRITE 1 #define CV_STORAGE_WRITE_TEXT CV_STORAGE_WRITE #define CV_STORAGE_WRITE_BINARY CV_STORAGE_WRITE #define CV_STORAGE_APPEND 2 #define CV_STORAGE_MEMORY 4 #define CV_STORAGE_FORMAT_MASK (7 << 3) #define CV_STORAGE_FORMAT_AUTO 0 #define CV_STORAGE_FORMAT_XML 8 #define CV_STORAGE_FORMAT_YAML 16 #define CV_STORAGE_FORMAT_JSON 24 #define CV_STORAGE_BASE64 64 #define CV_STORAGE_WRITE_BASE64 (CV_STORAGE_BASE64 | CV_STORAGE_WRITE) /** @brief List of attributes. : In the current implementation, attributes are used to pass extra parameters when writing user objects (see cvWrite). XML attributes inside tags are not supported, aside from the object type specification (type_id attribute). @see cvAttrList, cvAttrValue */ typedef struct CvAttrList { const char **attr; /**< NULL-terminated array of (attribute_name,attribute_value) pairs. */ struct CvAttrList *next; /**< Pointer to next chunk of the attributes list. */ } CvAttrList; /** initializes CvAttrList structure */ CV_INLINE CvAttrList cvAttrList(const char **attr CV_DEFAULT(NULL), CvAttrList *next CV_DEFAULT(NULL)) { CvAttrList l; l.attr = attr; l.next = next; return l; } struct CvTypeInfo; #define CV_NODE_NONE 0 #define CV_NODE_INT 1 #define CV_NODE_INTEGER CV_NODE_INT #define CV_NODE_REAL 2 #define CV_NODE_FLOAT CV_NODE_REAL #define CV_NODE_STR 3 #define CV_NODE_STRING CV_NODE_STR #define CV_NODE_REF 4 /**< not used */ #define CV_NODE_SEQ 5 #define CV_NODE_MAP 6 #define CV_NODE_TYPE_MASK 7 #define CV_NODE_TYPE(flags) ((flags)&CV_NODE_TYPE_MASK) /** file node flags */ #define CV_NODE_FLOW 8 /**= CV_NODE_SEQ) #define CV_NODE_IS_FLOW(flags) (((flags)&CV_NODE_FLOW) != 0) #define CV_NODE_IS_EMPTY(flags) (((flags)&CV_NODE_EMPTY) != 0) #define CV_NODE_IS_USER(flags) (((flags)&CV_NODE_USER) != 0) #define CV_NODE_HAS_NAME(flags) (((flags)&CV_NODE_NAMED) != 0) #define CV_NODE_SEQ_SIMPLE 256 #define CV_NODE_SEQ_IS_SIMPLE(seq) (((seq)->flags & CV_NODE_SEQ_SIMPLE) != 0) typedef struct CvString { int len; char *ptr; } CvString; /** All the keys (names) of elements in the readed file storage are stored in the hash to speed up the lookup operations: */ typedef struct CvStringHashNode { unsigned hashval; CvString str; struct CvStringHashNode *next; } CvStringHashNode; typedef struct CvGenericHash CvFileNodeHash; /** Basic element of the file storage - scalar or collection: */ typedef struct CvFileNode { int tag; struct CvTypeInfo *info; /**< type information (only for user-defined object, for others it is 0) */ union { double f; /**< scalar floating-point number */ int i; /**< scalar integer number */ CvString str; /**< text string */ CvSeq *seq; /**< sequence (ordered collection of file nodes) */ CvFileNodeHash *map; /**< map (collection of named file nodes) */ } data; } CvFileNode; #ifdef __cplusplus extern "C" { #endif typedef int(CV_CDECL *CvIsInstanceFunc)(const void *struct_ptr); typedef void(CV_CDECL *CvReleaseFunc)(void **struct_dblptr); typedef void *(CV_CDECL *CvReadFunc)(CvFileStorage *storage, CvFileNode *node); typedef void(CV_CDECL *CvWriteFunc)(CvFileStorage *storage, const char *name, const void *struct_ptr, CvAttrList attributes); typedef void *(CV_CDECL *CvCloneFunc)(const void *struct_ptr); #ifdef __cplusplus } #endif /** @brief Type information The structure contains information about one of the standard or user-defined types. Instances of the type may or may not contain a pointer to the corresponding CvTypeInfo structure. In any case, there is a way to find the type info structure for a given object using the cvTypeOf function. Alternatively, type info can be found by type name using cvFindType, which is used when an object is read from file storage. The user can register a new type with cvRegisterType that adds the type information structure into the beginning of the type list. Thus, it is possible to create specialized types from generic standard types and override the basic methods. */ typedef struct CvTypeInfo { int flags; /**< not used */ int header_size; /**< sizeof(CvTypeInfo) */ struct CvTypeInfo *prev; /**< previous registered type in the list */ struct CvTypeInfo *next; /**< next registered type in the list */ const char *type_name; /**< type name, written to file storage */ CvIsInstanceFunc is_instance; /**< checks if the passed object belongs to the type */ CvReleaseFunc release; /**< releases object (memory etc.) */ CvReadFunc read; /**< reads object from file storage */ CvWriteFunc write; /**< writes object to file storage */ CvCloneFunc clone; /**< creates a copy of the object */ } CvTypeInfo; /**** System data types ******/ typedef struct CvPluginFuncInfo { void **func_addr; void *default_func_addr; const char *func_names; int search_modules; int loaded_from; } CvPluginFuncInfo; typedef struct CvModuleInfo { struct CvModuleInfo *next; const char *name; const char *version; CvPluginFuncInfo *func_tab; } CvModuleInfo; /** @} */ #endif /*OPENCV_CORE_TYPES_H*/ /* End of file. */