// Copyright (c) 2009, V. Lepetit, EPFL // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // 1. Redistributions of source code must retain the above copyright notice, this // list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR // ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The views and conclusions contained in the software and documentation are those // of the authors and should not be interpreted as representing official policies, // either expressed or implied, of the FreeBSD Project. #include "epnp.h" #include "math.h" #include "stdbool.h" #include "stdio.h" #include "stdlib.h" void print_mat(const CvMat *M) { if (!M) { printf("null\n"); return; } printf("%d x %d:\n", M->rows, M->cols); for (unsigned i = 0; i < M->rows; i++) { for (unsigned j = 0; j < M->cols; j++) { printf("%.17g, ", cvmGet(M, i, j)); } printf("\n"); } printf("\n"); } void epnp_epnp(epnp *self) { self->maximum_number_of_correspondences = 0; self->number_of_correspondences = 0; self->pws = 0; self->us = 0; self->alphas = 0; self->pcs = 0; } void epnp_dtor(epnp *self) { free(self->pws); free(self->us); free(self->alphas); free(self->pcs); } double epnp_compute_R_and_t(epnp *self, const double *ut, const double *betas, double R[3][3], double t[3]); double dot(const double *v1, const double *v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } double dist2(const double *p1, const double *p2) { return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) + (p1[2] - p2[2]) * (p1[2] - p2[2]); } void epnp_compute_rho(epnp *self, double *rho) { rho[0] = dist2(self->cws[0], self->cws[1]); rho[1] = dist2(self->cws[0], self->cws[2]); rho[2] = dist2(self->cws[0], self->cws[3]); rho[3] = dist2(self->cws[1], self->cws[2]); rho[4] = dist2(self->cws[1], self->cws[3]); rho[5] = dist2(self->cws[2], self->cws[3]); CvMat cws = cvMat(4, 3, CV_64F, self->cws); CvMat ccs = cvMat(4, 3, CV_64F, self->ccs); CvMat pws = cvMat(self->maximum_number_of_correspondences, 3, CV_64F, self->pws); } void epnp_set_internal_parameters(epnp *self, double uc, double vc, double fu, double fv) { self->uc = uc; self->vc = vc; self->fu = fu; self->fv = fv; } void epnp_set_maximum_number_of_correspondences(epnp *self, int n) { if (self->maximum_number_of_correspondences < n) { if (self->pws != 0) free(self->pws); if (self->us != 0) free(self->us); if (self->alphas != 0) free(self->alphas); if (self->pcs != 0) free(self->pcs); self->maximum_number_of_correspondences = n; self->pws = calloc(sizeof(double), 3 * self->maximum_number_of_correspondences); self->us = calloc(sizeof(double), 2 * self->maximum_number_of_correspondences); self->alphas = calloc(sizeof(double), 4 * self->maximum_number_of_correspondences); self->pcs = calloc(sizeof(double), 3 * self->maximum_number_of_correspondences); } } void epnp_reset_correspondences(epnp *self) { self->number_of_correspondences = 0; } void epnp_add_correspondence(epnp *self, double X, double Y, double Z, double u, double v) { self->pws[3 * self->number_of_correspondences] = X; self->pws[3 * self->number_of_correspondences + 1] = Y; self->pws[3 * self->number_of_correspondences + 2] = Z; self->us[2 * self->number_of_correspondences] = u; self->us[2 * self->number_of_correspondences + 1] = v; self->number_of_correspondences++; } void epnp_choose_control_points(epnp *self) { // Take C0 as the reference points centroid: self->cws[0][0] = self->cws[0][1] = self->cws[0][2] = 0; for (int i = 0; i < self->number_of_correspondences; i++) for (int j = 0; j < 3; j++) self->cws[0][j] += self->pws[3 * i + j]; for (int j = 0; j < 3; j++) self->cws[0][j] /= self->number_of_correspondences; // Take C1, C2, and C3 from PCA on the reference points: CvMat *PW0 = cvCreateMat(self->number_of_correspondences, 3, CV_64F); double pw0tpw0[3 * 3] = {0}, dc[3], uct[3 * 3]; CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0); CvMat DC = cvMat(3, 1, CV_64F, dc); CvMat UCt = cvMat(3, 3, CV_64F, uct); for (int i = 0; i < self->number_of_correspondences; i++) for (int j = 0; j < 3; j++) PW0->data.db[3 * i + j] = self->pws[3 * i + j] - self->cws[0][j]; cvMulTransposed(PW0, &PW0tPW0, 1, 0, 1); cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T); assert(UCt.data.db == uct); cvReleaseMat(&PW0); for (int i = 1; i < 4; i++) { double k = sqrt(dc[i - 1] / self->number_of_correspondences); for (int j = 0; j < 3; j++) self->cws[i][j] = self->cws[0][j] + k * uct[3 * (i - 1) + j]; } } void epnp_compute_barycentric_coordinates(epnp *self) { double cc[3 * 3], cc_inv[3 * 3]; CvMat CC = cvMat(3, 3, CV_64F, cc); CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv); for (int i = 0; i < 3; i++) for (int j = 1; j < 4; j++) cc[3 * i + j - 1] = self->cws[j][i] - self->cws[0][i]; cvInvert(&CC, &CC_inv, 1); double *ci = cc_inv; for (int i = 0; i < self->number_of_correspondences; i++) { double *pi = self->pws + 3 * i; double *a = self->alphas + 4 * i; for (int j = 0; j < 3; j++) a[1 + j] = ci[3 * j] * (pi[0] - self->cws[0][0]) + ci[3 * j + 1] * (pi[1] - self->cws[0][1]) + ci[3 * j + 2] * (pi[2] - self->cws[0][2]); a[0] = 1.0f - a[1] - a[2] - a[3]; } } void epnp_fill_M(epnp *self, CvMat *M, const int row, const double *as, const double u, const double v) { double *M1 = M->data.db + row * 12; double *M2 = M1 + 12; for (int i = 0; i < 4; i++) { M1[3 * i] = as[i] * self->fu; M1[3 * i + 1] = 0.0; M1[3 * i + 2] = as[i] * (self->uc - u); M2[3 * i] = 0.0; M2[3 * i + 1] = as[i] * self->fv; M2[3 * i + 2] = as[i] * (self->vc - v); } } void epnp_compute_ccs(epnp *self, const double *betas, const double *ut) { for (int i = 0; i < 4; i++) self->ccs[i][0] = self->ccs[i][1] = self->ccs[i][2] = 0.0f; for (int i = 0; i < 4; i++) { const double *v = ut + 12 * (11 - i); for (int j = 0; j < 4; j++) for (int k = 0; k < 3; k++) self->ccs[j][k] += betas[i] * v[3 * j + k]; } } void epnp_compute_pcs(epnp *self) { for (int i = 0; i < self->number_of_correspondences; i++) { double *a = self->alphas + 4 * i; double *pc = self->pcs + 3 * i; for (int j = 0; j < 3; j++) pc[j] = a[0] * self->ccs[0][j] + a[1] * self->ccs[1][j] + a[2] * self->ccs[2][j] + a[3] * self->ccs[3][j]; } } void epnp_compute_L_6x10(epnp *self, const double *ut, double *l_6x10) { const double *v[4]; v[0] = ut + 12 * 11; v[1] = ut + 12 * 10; v[2] = ut + 12 * 9; v[3] = ut + 12 * 8; double dv[4][6][3]; for (int i = 0; i < 4; i++) { int a = 0, b = 1; for (int j = 0; j < 6; j++) { dv[i][j][0] = v[i][3 * a] - v[i][3 * b]; dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1]; dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2]; b++; if (b > 3) { a++; b = a + 1; } } } for (int i = 0; i < 6; i++) { double *row = l_6x10 + 10 * i; row[0] = dot(dv[0][i], dv[0][i]); row[1] = 2.0f * dot(dv[0][i], dv[1][i]); row[2] = dot(dv[1][i], dv[1][i]); row[3] = 2.0f * dot(dv[0][i], dv[2][i]); row[4] = 2.0f * dot(dv[1][i], dv[2][i]); row[5] = dot(dv[2][i], dv[2][i]); row[6] = 2.0f * dot(dv[0][i], dv[3][i]); row[7] = 2.0f * dot(dv[1][i], dv[3][i]); row[8] = 2.0f * dot(dv[2][i], dv[3][i]); row[9] = dot(dv[3][i], dv[3][i]); } } void find_betas_approx_1(const CvMat *L_6x10, const CvMat *Rho, double *betas) { double l_6x4[6 * 4], b4[4]; CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4); CvMat B4 = cvMat(4, 1, CV_64F, b4); for (int i = 0; i < 6; i++) { cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0)); cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1)); cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3)); cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6)); } cvSolve(&L_6x4, Rho, &B4, CV_SVD); assert(B4.data.db == b4); if (b4[0] < 0) { betas[0] = sqrt(-b4[0]); betas[1] = -b4[1] / betas[0]; betas[2] = -b4[2] / betas[0]; betas[3] = -b4[3] / betas[0]; } else { betas[0] = sqrt(b4[0]); betas[1] = b4[1] / betas[0]; betas[2] = b4[2] / betas[0]; betas[3] = b4[3] / betas[0]; } } void compute_A_and_b_gauss_newton(const double *l_6x10, const double *rho, double betas[4], CvMat *A, CvMat *b) { for (int i = 0; i < 6; i++) { const double *rowL = l_6x10 + i * 10; double *rowA = A->data.db + i * 4; rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[3] * betas[2] + rowL[6] * betas[3]; rowA[1] = rowL[1] * betas[0] + 2 * rowL[2] * betas[1] + rowL[4] * betas[2] + rowL[7] * betas[3]; rowA[2] = rowL[3] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + rowL[8] * betas[3]; rowA[3] = rowL[6] * betas[0] + rowL[7] * betas[1] + rowL[8] * betas[2] + 2 * rowL[9] * betas[3]; cvmSet(b, i, 0, rho[i] - (rowL[0] * betas[0] * betas[0] + rowL[1] * betas[0] * betas[1] + rowL[2] * betas[1] * betas[1] + rowL[3] * betas[0] * betas[2] + rowL[4] * betas[1] * betas[2] + rowL[5] * betas[2] * betas[2] + rowL[6] * betas[0] * betas[3] + rowL[7] * betas[1] * betas[3] + rowL[8] * betas[2] * betas[3] + rowL[9] * betas[3] * betas[3])); } } void qr_solve(CvMat *A, CvMat *b, CvMat *X) { static int max_nr = 0; static double *A1, *A2; const int nr = A->rows; const int nc = A->cols; if (max_nr != 0 && max_nr < nr) { free(A1); free(A2); } if (max_nr < nr) { max_nr = nr; A1 = malloc(sizeof(double) * nr); A2 = malloc(sizeof(double) * nr); } double *pA = A->data.db, *ppAkk = pA; for (int k = 0; k < nc; k++) { double *ppAik = ppAkk, eta = fabs(*ppAik); for (int i = k + 1; i < nr; i++) { double elt = fabs(*ppAik); if (eta < elt) eta = elt; ppAik += nc; } if (eta == 0) { A1[k] = A2[k] = 0.0; // cerr << "God damnit, A is singular, this shouldn't happen." << endl; return; } else { double *ppAik = ppAkk, sum = 0.0, inv_eta = 1. / eta; for (int i = k; i < nr; i++) { *ppAik *= inv_eta; sum += *ppAik * *ppAik; ppAik += nc; } double sigma = sqrt(sum); if (*ppAkk < 0) sigma = -sigma; *ppAkk += sigma; A1[k] = sigma * *ppAkk; A2[k] = -eta * sigma; for (int j = k + 1; j < nc; j++) { double *ppAik = ppAkk, sum = 0; for (int i = k; i < nr; i++) { sum += *ppAik * ppAik[j - k]; ppAik += nc; } double tau = sum / A1[k]; ppAik = ppAkk; for (int i = k; i < nr; i++) { ppAik[j - k] -= tau * *ppAik; ppAik += nc; } } } ppAkk += nc + 1; } // b <- Qt b double *ppAjj = pA, *pb = b->data.db; for (int j = 0; j < nc; j++) { double *ppAij = ppAjj, tau = 0; for (int i = j; i < nr; i++) { tau += *ppAij * pb[i]; ppAij += nc; } tau /= A1[j]; ppAij = ppAjj; for (int i = j; i < nr; i++) { pb[i] -= tau * *ppAij; ppAij += nc; } ppAjj += nc + 1; } // X = R-1 b double *pX = X->data.db; pX[nc - 1] = pb[nc - 1] / A2[nc - 1]; for (int i = nc - 2; i >= 0; i--) { double *ppAij = pA + i * nc + (i + 1), sum = 0; for (int j = i + 1; j < nc; j++) { sum += *ppAij * pX[j]; ppAij++; } pX[i] = (pb[i] - sum) / A2[i]; } } void gauss_newton(const CvMat *L_6x10, const CvMat *Rho, double betas[4]) { const int iterations_number = 5; double a[6 * 4], b[6], x[4]; CvMat A = cvMat(6, 4, CV_64F, a); CvMat B = cvMat(6, 1, CV_64F, b); CvMat X = cvMat(4, 1, CV_64F, x); for (int k = 0; k < iterations_number; k++) { compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db, betas, &A, &B); qr_solve(&A, &B, &X); for (int i = 0; i < 4; i++) betas[i] += x[i]; } } void find_betas_approx_2(const CvMat *L_6x10, const CvMat *Rho, double *betas) { double l_6x3[6 * 3], b3[3]; CvMat L_6x3 = cvMat(6, 3, CV_64F, l_6x3); CvMat B3 = cvMat(3, 1, CV_64F, b3); for (int i = 0; i < 6; i++) { cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0)); cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1)); cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2)); } cvSolve(&L_6x3, Rho, &B3, CV_SVD); if (b3[0] < 0) { betas[0] = sqrt(-b3[0]); betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0; } else { betas[0] = sqrt(b3[0]); betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0; } if (b3[1] < 0) betas[0] = -betas[0]; betas[2] = 0.0; betas[3] = 0.0; } // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44] // betas_approx_3 = [B11 B12 B22 B13 B23 ] void epnp_find_betas_approx_3(epnp *self, const CvMat *L_6x10, const CvMat *Rho, double *betas) { double l_6x5[6 * 5], b5[5]; CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5); CvMat B5 = cvMat(5, 1, CV_64F, b5); for (int i = 0; i < 6; i++) { cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0)); cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1)); cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2)); cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3)); cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4)); } cvSolve(&L_6x5, Rho, &B5, CV_SVD); if (b5[0] < 0) { betas[0] = sqrt(-b5[0]); betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0; } else { betas[0] = sqrt(b5[0]); betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0; } if (b5[1] < 0) betas[0] = -betas[0]; betas[2] = b5[3] / betas[0]; betas[3] = 0.0; } void copy_R_and_t(const double R_src[3][3], const double t_src[3], double R_dst[3][3], double t_dst[3]) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) R_dst[i][j] = R_src[i][j]; t_dst[i] = t_src[i]; } } double epnp_compute_pose(epnp *self, double R[3][3], double t[3]) { epnp_choose_control_points(self); epnp_compute_barycentric_coordinates(self); CvMat *M = cvCreateMat(2 * self->number_of_correspondences, 12, CV_64F); for (int i = 0; i < self->number_of_correspondences; i++) epnp_fill_M(self, M, 2 * i, self->alphas + 4 * i, self->us[2 * i], self->us[2 * i + 1]); double mtm[12 * 12], d[12], ut[12 * 12]; CvMat MtM = cvMat(12, 12, CV_64F, mtm); CvMat D = cvMat(12, 1, CV_64F, d); CvMat Ut = cvMat(12, 12, CV_64F, ut); cvMulTransposed(M, &MtM, 1, 0, 1); cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T); cvReleaseMat(&M); /* double gt[] = {0.907567, -0.00916941, -0.0637565, -0.239863, 0.00224965, 0.0225974, -0.239574, 0.00209046, 0.0176213, -0.237255, 0.00251711, -0.0108157, 0.00910763, 0.909518, 0.0026331, -0.00232957, -0.239824, 0.00409253, -0.00243169, -0.239934, 0.00316978, -0.0024403, -0.239909, -0.0016784, -0.00657473, -0.00182409, -0.118455, -0.418384, -0.0208829, -0.00537926, -0.341435, -0.198683, 0.0639791, 0.777439, 0.211238, 0.0351144, -0.000558729, -0.00120335, 0.0410987, 0.435735, 0.470224, -0.0117729, -0.330236, -0.651751, 0.0877612, -0.112846, 0.179057, -0.0293607, 0.000207011, -0.000114796, 1.30348e-05, -0.150349, -0.396757, -0.0336814, 0.362168, -0.332794, -0.0038853, -0.215378, 0.728371, 3.59307e-05, -0.000236456, 3.59257e-05, -0.00240085, -0.516359, 0.533741, 8.75851e-05, 0.550447, -0.29792, -0.00101687, -0.0338867, -0.235687, -0.00652534, 0.367037, -0.0382166, -0.268689, 0.518886, -0.0415839, 0.198992, 0.504361, -0.0564282, 0.00252704, 0.456381, -0.0480543, 0.11356, -0.0477438, -0.404345, -0.0789953, -0.0475805, -0.514161, -0.108317, -0.0431554, -0.498573, 0.134824, -0.0719115, -0.52184, 0.0593704, 0.172473, -0.0624523, 0.798148, 0.0821341, -0.0877883, -0.120482, 0.105865, -0.083816, -0.254253, 0.24317, -0.056877, -0.393827, -0.0555454, -0.0526344, 0.0122309, -0.0649974, -0.0336308, 0.479865, -0.117645, -0.135477, -0.783616, -0.0585432, -0.034449, 0.327881, 0.0797424, 0.032575, 0.168567, 0.0597489, 0.0568341, -0.66392, 0.0387932, 0.0297936, -0.142108, 0.0542191, 0.0221337, 0.700399, -0.00310509, 0.000734298, -0.485965, 0.0476647, 0.0218702, -0.51114, -0.00347318, -0.0252922, -0.520376, 0.00830308, -0.0120006, -0.477658 }; for(int i = 0;i < 144;i++) ut[i] = gt[i];*/ assert(Ut.data.db == ut); double l_6x10[6 * 10], rho[6]; CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10); CvMat Rho = cvMat(6, 1, CV_64F, rho); epnp_compute_L_6x10(self, ut, l_6x10); epnp_compute_rho(self, rho); double Betas[4][4], rep_errors[4]; double Rs[4][3][3], ts[4][3]; find_betas_approx_1(&L_6x10, &Rho, Betas[1]); gauss_newton(&L_6x10, &Rho, Betas[1]); rep_errors[1] = epnp_compute_R_and_t(self, ut, Betas[1], Rs[1], ts[1]); find_betas_approx_2(&L_6x10, &Rho, Betas[2]); gauss_newton(&L_6x10, &Rho, Betas[2]); rep_errors[2] = epnp_compute_R_and_t(self, ut, Betas[2], Rs[2], ts[2]); epnp_find_betas_approx_3(self, &L_6x10, &Rho, Betas[3]); gauss_newton(&L_6x10, &Rho, Betas[3]); rep_errors[3] = epnp_compute_R_and_t(self, ut, Betas[3], Rs[3], ts[3]); int N = 1; if (rep_errors[2] < rep_errors[1]) N = 2; if (rep_errors[3] < rep_errors[N]) N = 3; copy_R_and_t(Rs[N], ts[N], R, t); return rep_errors[N]; } double epnp_reprojection_error(epnp *self, const double R[3][3], const double t[3]) { double sum2 = 0.0; for (int i = 0; i < self->number_of_correspondences; i++) { double *pw = self->pws + 3 * i; double Xc = dot(R[0], pw) + t[0]; double Yc = dot(R[1], pw) + t[1]; double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]); double ue = self->uc + self->fu * Xc * inv_Zc; double ve = self->vc + self->fv * Yc * inv_Zc; double u = self->us[2 * i], v = self->us[2 * i + 1]; sum2 += sqrt((u - ue) * (u - ue) + (v - ve) * (v - ve)); } return sum2 / self->number_of_correspondences; } void epnp_estimate_R_and_t(epnp *self, double R[3][3], double t[3]) { double pc0[3], pw0[3]; pc0[0] = pc0[1] = pc0[2] = 0.0; pw0[0] = pw0[1] = pw0[2] = 0.0; for (int i = 0; i < self->number_of_correspondences; i++) { const double *pc = self->pcs + 3 * i; const double *pw = self->pws + 3 * i; for (int j = 0; j < 3; j++) { pc0[j] += pc[j]; pw0[j] += pw[j]; } } for (int j = 0; j < 3; j++) { pc0[j] /= self->number_of_correspondences; pw0[j] /= self->number_of_correspondences; } double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3]; CvMat ABt = cvMat(3, 3, CV_64F, abt); CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d); CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u); CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v); cvSetZero(&ABt); for (int i = 0; i < self->number_of_correspondences; i++) { double *pc = self->pcs + 3 * i; double *pw = self->pws + 3 * i; for (int j = 0; j < 3; j++) { abt[3 * j] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]); abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]); abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]); } } cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j); const double det = R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] - R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1]; if (det < 0) { R[2][0] = -R[2][0]; R[2][1] = -R[2][1]; R[2][2] = -R[2][2]; } t[0] = pc0[0] - dot(R[0], pw0); t[1] = pc0[1] - dot(R[1], pw0); t[2] = pc0[2] - dot(R[2], pw0); } void print_pose(const double R[3][3], const double t[3]) { for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 3; j++) { printf("%g ", R[i][j]); } printf("%g ", t[i]); printf("\n"); } printf("\n"); } void epnp_solve_for_sign(epnp *self) { if (self->pcs[2] < 0.0) { for (int i = 0; i < 4; i++) for (int j = 0; j < 3; j++) self->ccs[i][j] = -self->ccs[i][j]; for (int i = 0; i < self->number_of_correspondences; i++) { self->pcs[3 * i] = -self->pcs[3 * i]; self->pcs[3 * i + 1] = -self->pcs[3 * i + 1]; self->pcs[3 * i + 2] = -self->pcs[3 * i + 2]; } } } double epnp_compute_R_and_t(epnp *self, const double *ut, const double *betas, double R[3][3], double t[3]) { epnp_compute_ccs(self, betas, ut); epnp_compute_pcs(self); epnp_solve_for_sign(self); epnp_estimate_R_and_t(self, R, t); return epnp_reprojection_error(self, R, t); } // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44] // betas_approx_1 = [B11 B12 B13 B14] // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44] // betas_approx_2 = [B11 B12 B22 ] void mat_to_quat(const double R[3][3], double q[4]) { double tr = R[0][0] + R[1][1] + R[2][2]; double n4; if (tr > 0.0f) { q[0] = R[1][2] - R[2][1]; q[1] = R[2][0] - R[0][2]; q[2] = R[0][1] - R[1][0]; q[3] = tr + 1.0f; n4 = q[3]; } else if ((R[0][0] > R[1][1]) && (R[0][0] > R[2][2])) { q[0] = 1.0f + R[0][0] - R[1][1] - R[2][2]; q[1] = R[1][0] + R[0][1]; q[2] = R[2][0] + R[0][2]; q[3] = R[1][2] - R[2][1]; n4 = q[0]; } else if (R[1][1] > R[2][2]) { q[0] = R[1][0] + R[0][1]; q[1] = 1.0f + R[1][1] - R[0][0] - R[2][2]; q[2] = R[2][1] + R[1][2]; q[3] = R[2][0] - R[0][2]; n4 = q[1]; } else { q[0] = R[2][0] + R[0][2]; q[1] = R[2][1] + R[1][2]; q[2] = 1.0f + R[2][2] - R[0][0] - R[1][1]; q[3] = R[0][1] - R[1][0]; n4 = q[2]; } double scale = 0.5f / (sqrt(n4)); q[0] *= scale; q[1] *= scale; q[2] *= scale; q[3] *= scale; } void relative_error(double *rot_err, double *transl_err, const double Rtrue[3][3], const double ttrue[3], const double Rest[3][3], const double test[3]) { double qtrue[4], qest[4]; mat_to_quat(Rtrue, qtrue); mat_to_quat(Rest, qest); double rot_err1 = sqrt((qtrue[0] - qest[0]) * (qtrue[0] - qest[0]) + (qtrue[1] - qest[1]) * (qtrue[1] - qest[1]) + (qtrue[2] - qest[2]) * (qtrue[2] - qest[2]) + (qtrue[3] - qest[3]) * (qtrue[3] - qest[3])) / sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]); double rot_err2 = sqrt((qtrue[0] + qest[0]) * (qtrue[0] + qest[0]) + (qtrue[1] + qest[1]) * (qtrue[1] + qest[1]) + (qtrue[2] + qest[2]) * (qtrue[2] + qest[2]) + (qtrue[3] + qest[3]) * (qtrue[3] + qest[3])) / sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]); *rot_err = fmin(rot_err1, rot_err2); *transl_err = sqrt((ttrue[0] - test[0]) * (ttrue[0] - test[0]) + (ttrue[1] - test[1]) * (ttrue[1] - test[1]) + (ttrue[2] - test[2]) * (ttrue[2] - test[2])) / sqrt(ttrue[0] * ttrue[0] + ttrue[1] * ttrue[1] + ttrue[2] * ttrue[2]); }