#ifndef _DCL_HELPERS_H #define _DCL_HELPERS_H #define DCL_FLOAT FLT //XXX XXX XXX WARNING XXX XXX XXX The argument order may be changing!!! /* Prints matrix A of size[n][m] */ void dclPrint( const DCL_FLOAT * A, int n, int m ); /* Returns the identity matrix */ void dclIdentity( DCL_FLOAT * A, int n ); /* R = Transpose(A) A is (n by m) R is (m by n) */ void dclTransp( DCL_FLOAT * R, const DCL_FLOAT * A, int n, int m ); /* Calculate L,U of a matrix A with pivot table; the pivot table is output. */ void dclLU( DCL_FLOAT * L, DCL_FLOAT * U, const DCL_FLOAT * A, int * Piv, int n ); /* Pivots a matrix to a different matrix R = Pivot(A) given table 'Piv' A and R are (n by m) */ void dclPivot( DCL_FLOAT * R, const DCL_FLOAT * A, int * Piv, int n, int m ); /* Solve LX=B for matrix X and B L is n by n (lower triangular) B is n by m */ void dclLSub( DCL_FLOAT * X, const DCL_FLOAT * L, const DCL_FLOAT * B, int n, int m ); /* Solve UX=B for matrix X and B U is n by n (upper triangular) B is n by m */ void dclUSub( DCL_FLOAT * X, const DCL_FLOAT * U, const DCL_FLOAT * B, int n, int m ); /* Inverts a matrix X (n by n) using the method of LU decomposition */ void dclInv( DCL_FLOAT * Ainv, const DCL_FLOAT * A, int n ); /* Matrix Multiply C = A * B A (n by m) B (m by p) C (n by p) */ void dclMul( DCL_FLOAT * R, const DCL_FLOAT * A, const DCL_FLOAT * B, int n, int m, int p ); /* Matrix Multiply D = A * B + C A (n by m) B (m by p) C (n by p) D (n by p) */ void dclMulAdd( DCL_FLOAT * R, const DCL_FLOAT * A, const DCL_FLOAT * B, const DCL_FLOAT * C, int n, int m, int p ); /* Matrix Multiply D = alpha * A * B + beta * C A (n by m) B (m by p) C (n by p) D (n by p) */ void dclGMulAdd( DCL_FLOAT * D, const DCL_FLOAT * A, const DCL_FLOAT * B, const DCL_FLOAT * C, DCL_FLOAT alpha, DCL_FLOAT beta, int n, int m, int p ); #endif