#include #include #include #include "kalman_filter.h" void KalmanPredict( KAL_VEC(xhat_k_km1), /* OUTPUT: (S) Predicted state at time 'k' */ KAL_MAT(P_k_km1), /* OUTPUT: (S x S) Predicted covariance at time 'k' */ KAL_MAT(P_km1_km1), /* INPUT: (S x S) Updated covariance from time 'k-1' */ KAL_VEC(xhat_km1_km1), /* INPUT: (S) Updated state from time 'k-1' */ KAL_MAT(F_k), /* INPUT: (S x S) State transition model */ KAL_MAT(B_k), /* INPUT: (S x U) Control input model */ KAL_VEC(u_k), /* INPUT: (U) Control vector */ KAL_MAT(Q_k), /* INPUT: (S x S) Covariance of process noise */ int S, /* INPUT: Number of dimensions in state vector */ int U) /* INPUT: Size of control input vector */ { KAL_MAT(F_k_tran); KAL_MAT(F_k__P_km1_km1); // Predicted state: xhat_k_km1 = Fk * xhat_km1_km1 + Bk * uk MUL(F_k, xhat_km1_km1, xhat_k_km1, S,S,1); // Predicted covar: P_k_km1 = Fk * P_km1_km1 * Fk' + Qk MUL(F_k, P_km1_km1, F_k__P_km1_km1, S, S, S); TRANSP(F_k, F_k_tran, S, S); MULADD(F_k__P_km1_km1, F_k_tran, Q_k, P_k_km1, S, S, S); } void KalmanUpdate( KAL_VEC(xhat_k_k), /* (S) OUTPUT: Updated state at time 'k' */ KAL_MAT(P_k_k), /* (S x S) OUTPUT: Updated covariance at time 'k' */ KAL_VEC(xhat_k_km1), /* (S) INPUT: Predicted state at time 'k' */ KAL_MAT(P_k_km1), /* (S x S) INPUT: Predicted covariance at time 'k' */ KAL_VEC(z_k), /* (B) INPUT: Observation vector */ KAL_MAT(H_k), /* (B x S) INPUT: Observational model */ KAL_MAT(R_k), /* (S x S) INPUT: Covariance of observational noise */ int B, /* INPUT: Number of observations in observation vector */ int S) /* INPUT: Number of measurements in the state vector */ { // UPDATE PHASE // Measurement residual: yhat_k = zk - Hk * xhat_k_km1 KAL_MAT(yhat_k); /* (B x 1) */ GMULADD(H_k,xhat_k_km1,z_k,yhat_k,-1.0f,1.0f,B,S,1); // Residual covariance: S_k = H_k * P_k_km1 * H_k' + R_k KAL_MAT(H_k_transp); /* (S x B) */ KAL_MAT(P_k_km1__H_k_transp); /* (S x B) */ KAL_MAT(S_k); /* (B x B) */ TRANSP(H_k,H_k_transp,B,S); MUL(P_k_km1,H_k_transp,P_k_km1__H_k_transp,S,S,B); MULADD(H_k,P_k_km1__H_k_transp,R_k,S_k,B,S,B); // Optimal Kalman gain: K_k = P_k_km1 * H_k' * inv(S_k) KAL_MAT(K_k); /* (S x B) */ KAL_MAT(S_k_inv); /* (B x B) */ INV(S_k,S_k_inv,B); MUL(P_K_km1__H_k_transp,S_k_inv,K_k,S,B,B); // Updated state esti: xhat_k_k = xhat_k_km1 + K_k * yhat_k MULADD(K_k,yhat_k,xhat_k_km1,S,B,1); // Updated covariance: P_k_k = (I - K_k * H_k) * P_k_km1 KAL_MAT(Ident); /* (S x S) */ KAL_MAT(I_minus_K_k_H_k); IDENTITY(Ident,S); GMULADD(K_k,H_k,Ident,I_minus_K_k_H_k,1.0,-1.0,S,B,S); MUL(I_minus_K_k_H_k,P_k_km1,P_k_k,S,S,1); }