From 7ea248577178f45033802ba5cc2867f8a66d69f8 Mon Sep 17 00:00:00 2001 From: Mike Turvey Date: Sun, 5 Feb 2017 23:01:34 -0700 Subject: Adding lighthousefind_tori --- tools/lighthousefind_tori/Makefile | 7 + tools/lighthousefind_tori/find_tori_math.c | 206 ++++++++++ tools/lighthousefind_tori/find_tori_math.h | 23 ++ tools/lighthousefind_tori/main.c | 219 +++++++++++ tools/lighthousefind_tori/tori_includes.h | 70 ++++ tools/lighthousefind_tori/torus_localizer.c | 561 ++++++++++++++++++++++++++++ tools/lighthousefind_tori/torus_localizer.h | 12 + tools/lighthousefind_tori/visualization.c | 94 +++++ tools/lighthousefind_tori/visualization.h | 48 +++ 9 files changed, 1240 insertions(+) create mode 100644 tools/lighthousefind_tori/Makefile create mode 100644 tools/lighthousefind_tori/find_tori_math.c create mode 100644 tools/lighthousefind_tori/find_tori_math.h create mode 100644 tools/lighthousefind_tori/main.c create mode 100644 tools/lighthousefind_tori/tori_includes.h create mode 100644 tools/lighthousefind_tori/torus_localizer.c create mode 100644 tools/lighthousefind_tori/torus_localizer.h create mode 100644 tools/lighthousefind_tori/visualization.c create mode 100644 tools/lighthousefind_tori/visualization.h (limited to 'tools') diff --git a/tools/lighthousefind_tori/Makefile b/tools/lighthousefind_tori/Makefile new file mode 100644 index 0000000..3bdfdd6 --- /dev/null +++ b/tools/lighthousefind_tori/Makefile @@ -0,0 +1,7 @@ +CFLAGS:=-g -O4 -DFLT=double -I../../redist -flto +LDFLAGS:=$(CFLAGS) -lm + +all: + gcc -O3 -o lighthousefind-tori main.c find_tori_math.c torus_localizer.c visualization.c ../../redist/linmath.c $(LDFLAGS) +clean: + rm -f lighthousefind-tori diff --git a/tools/lighthousefind_tori/find_tori_math.c b/tools/lighthousefind_tori/find_tori_math.c new file mode 100644 index 0000000..9c305f3 --- /dev/null +++ b/tools/lighthousefind_tori/find_tori_math.c @@ -0,0 +1,206 @@ +#include +#include +#include "find_tori_math.h" + +// TODO: optimization potential to do in-place inverse for some places where this is used. +Matrix3x3 inverseM33(const Matrix3x3 mat) +{ + Matrix3x3 newMat; + for (int a = 0; a < 3; a++) + { + for (int b = 0; b < 3; b++) + { + newMat.val[a][b] = mat.val[a][b]; + } + } + + for (int i = 0; i < 3; i++) + { + for (int j = i + 1; j < 3; j++) + { + double tmp = newMat.val[i][j]; + newMat.val[i][j] = newMat.val[j][i]; + newMat.val[j][i] = tmp; + } + } + + return newMat; +} + + +double distance(Point a, Point b) +{ + double x = a.x - b.x; + double y = a.y - b.y; + double z = a.z - b.z; + return sqrt(x*x + y*y + z*z); +} + +//################################### +// The following code originally came from +// http://stackoverflow.com/questions/23166898/efficient-way-to-calculate-a-3x3-rotation-matrix-from-the-rotation-defined-by-tw +// Need to check up on license terms and give proper attribution +// I think we'll be good with proper attribution, but don't want to assume without checking. + + + +/* -------------------------------------------------------------------- */ +/* Math Lib declarations */ + + + +/* -------------------------------------------------------------------- */ +/* Main function */ + +/** +* Calculate a rotation matrix from 2 normalized vectors. +* +* v1 and v2 must be unit length. +*/ +void rotation_between_vecs_to_mat3(double m[3][3], const double v1[3], const double v2[3]) +{ + double axis[3]; + /* avoid calculating the angle */ + double angle_sin; + double angle_cos; + + cross_v3_v3v3(axis, v1, v2); + + angle_sin = normalize_v3(axis); + angle_cos = dot_v3v3(v1, v2); + + if (angle_sin > FLT_EPSILON) { + axis_calc: + axis_angle_normalized_to_mat3_ex(m, axis, angle_sin, angle_cos); + } + else { + /* Degenerate (co-linear) vectors */ + if (angle_cos > 0.0f) { + /* Same vectors, zero rotation... */ + unit_m3(m); + } + else { + /* Colinear but opposed vectors, 180 rotation... */ + ortho_v3_v3(axis, v1); + normalize_v3(axis); + angle_sin = 0.0f; /* sin(M_PI) */ + angle_cos = -1.0f; /* cos(M_PI) */ + goto axis_calc; + } + } +} + + +/* -------------------------------------------------------------------- */ +/* Math Lib */ + +void unit_m3(double m[3][3]) +{ + m[0][0] = m[1][1] = m[2][2] = 1.0; + m[0][1] = m[0][2] = 0.0; + m[1][0] = m[1][2] = 0.0; + m[2][0] = m[2][1] = 0.0; +} + +double dot_v3v3(const double a[3], const double b[3]) +{ + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; +} + +void cross_v3_v3v3(double r[3], const double a[3], const double b[3]) +{ + r[0] = a[1] * b[2] - a[2] * b[1]; + r[1] = a[2] * b[0] - a[0] * b[2]; + r[2] = a[0] * b[1] - a[1] * b[0]; +} + +void mul_v3_v3fl(double r[3], const double a[3], double f) +{ + r[0] = a[0] * f; + r[1] = a[1] * f; + r[2] = a[2] * f; +} + +double normalize_v3_v3(double r[3], const double a[3]) +{ + double d = dot_v3v3(a, a); + + if (d > 1.0e-35f) { + d = sqrtf((float)d); + mul_v3_v3fl(r, a, 1.0f / d); + } + else { + d = r[0] = r[1] = r[2] = 0.0f; + } + + return d; +} + +double normalize_v3(double n[3]) +{ + return normalize_v3_v3(n, n); +} + +int axis_dominant_v3_single(const double vec[3]) +{ + const float x = fabsf((float)vec[0]); + const float y = fabsf((float)vec[1]); + const float z = fabsf((float)vec[2]); + return ((x > y) ? + ((x > z) ? 0 : 2) : + ((y > z) ? 1 : 2)); +} + +void ortho_v3_v3(double p[3], const double v[3]) +{ + const int axis = axis_dominant_v3_single(v); + + switch (axis) { + case 0: + p[0] = -v[1] - v[2]; + p[1] = v[0]; + p[2] = v[0]; + break; + case 1: + p[0] = v[1]; + p[1] = -v[0] - v[2]; + p[2] = v[1]; + break; + case 2: + p[0] = v[2]; + p[1] = v[2]; + p[2] = -v[0] - v[1]; + break; + } +} + +/* axis must be unit length */ +void axis_angle_normalized_to_mat3_ex( + double mat[3][3], const double axis[3], + const double angle_sin, const double angle_cos) +{ + double nsi[3], ico; + double n_00, n_01, n_11, n_02, n_12, n_22; + + ico = (1.0f - angle_cos); + nsi[0] = axis[0] * angle_sin; + nsi[1] = axis[1] * angle_sin; + nsi[2] = axis[2] * angle_sin; + + n_00 = (axis[0] * axis[0]) * ico; + n_01 = (axis[0] * axis[1]) * ico; + n_11 = (axis[1] * axis[1]) * ico; + n_02 = (axis[0] * axis[2]) * ico; + n_12 = (axis[1] * axis[2]) * ico; + n_22 = (axis[2] * axis[2]) * ico; + + mat[0][0] = n_00 + angle_cos; + mat[0][1] = n_01 + nsi[2]; + mat[0][2] = n_02 - nsi[1]; + mat[1][0] = n_01 - nsi[2]; + mat[1][1] = n_11 + angle_cos; + mat[1][2] = n_12 + nsi[0]; + mat[2][0] = n_02 + nsi[1]; + mat[2][1] = n_12 - nsi[0]; + mat[2][2] = n_22 + angle_cos; +} diff --git a/tools/lighthousefind_tori/find_tori_math.h b/tools/lighthousefind_tori/find_tori_math.h new file mode 100644 index 0000000..a10c3fc --- /dev/null +++ b/tools/lighthousefind_tori/find_tori_math.h @@ -0,0 +1,23 @@ +#ifndef __FIND_TORI_MATH_H +#define __FIND_TORI_MATH_H + +#include "tori_includes.h" + +Matrix3x3 inverseM33(const Matrix3x3 mat); +double distance(Point a, Point b); + +void unit_m3(double m[3][3]); +double dot_v3v3(const double a[3], const double b[3]); +double normalize_v3(double n[3]); +void cross_v3_v3v3(double r[3], const double a[3], const double b[3]); +void mul_v3_v3fl(double r[3], const double a[3], double f); +void ortho_v3_v3(double p[3], const double v[3]); +void axis_angle_normalized_to_mat3_ex( + double mat[3][3], + const double axis[3], + const double angle_sin, + const double angle_cos); +void rotation_between_vecs_to_mat3(double m[3][3], const double v1[3], const double v2[3]); + + +#endif diff --git a/tools/lighthousefind_tori/main.c b/tools/lighthousefind_tori/main.c new file mode 100644 index 0000000..2fd517a --- /dev/null +++ b/tools/lighthousefind_tori/main.c @@ -0,0 +1,219 @@ +#include +#include +#include +#include +#include +#include +#include "linmath.h" +#include "torus_localizer.h" + +#define PTS 32 +#define MAX_CHECKS 40000 +#define MIN_HITS_FOR_VALID 10 + +FLT hmd_points[PTS * 3]; +FLT hmd_norms[PTS * 3]; + +// index for a given sensor is (2*sensor + is_sensor_y ? 1 : 0) +FLT hmd_point_angles[PTS * 2]; +int hmd_point_counts[PTS * 2]; +int best_hmd_target = 0; + +static void printTrackedObject(TrackedObject *to) +{ + for (unsigned int i = 0; i < to->numSensors; i++) + { + printf("%2.2d: [%5.5f,%5.5f] (%5.5f,%5.5f,%5.5f)\n", + i, + to->sensor[i].theta, + to->sensor[i].phi, + to->sensor[i].point.x, + to->sensor[i].point.y, + to->sensor[i].point.z + ); + } +} + +static void runTheNumbers() +{ + TrackedObject *to; + + to = malloc(sizeof(TrackedObject)+(PTS * sizeof(TrackedSensor))); + + int sensorCount = 0; + + for (int i = 0; i < PTS; i++) + { + // if there are enough valid counts for both the x and y sweeps for sensor i + if ((hmd_point_counts[2*i] > MIN_HITS_FOR_VALID) && + (hmd_point_counts[2*i + 1] > MIN_HITS_FOR_VALID)) + { + to->sensor[sensorCount].point.x = hmd_points[i * 3 + 0]; + to->sensor[sensorCount].point.y = hmd_points[i * 3 + 1]; + to->sensor[sensorCount].point.z = hmd_points[i * 3 + 2]; + to->sensor[sensorCount].theta = hmd_point_angles[i * 2 + 0]; + to->sensor[sensorCount].phi = hmd_point_angles[i * 2 + 1]; + sensorCount++; + } + } + + to->numSensors = sensorCount; + + printf("Using %d sensors to find lighthouse.\n", sensorCount); + + Point lh = SolveForLighthouse(to, 0); + + printf("(%f, %f, %f)\n", lh.x, lh.y, lh.z); + + //printTrackedObject(to); + free(to); +} + + +int LoadData(char Camera, const char * datafile) +{ + + + //First, read the positions of all the sensors on the HMD. + FILE * f = fopen("HMD_points.csv", "r"); + int pt = 0; + if (!f) + { + fprintf(stderr, "error: can't open hmd points.\n"); + return -5; + } + while (!feof(f) && !ferror(f) && pt < PTS) + { + float fx, fy, fz; + int r = fscanf(f, "%g %g %g\n", &fx, &fy, &fz); + hmd_points[pt * 3 + 0] = fx; + hmd_points[pt * 3 + 1] = fy; + hmd_points[pt * 3 + 2] = fz; + pt++; + if (r != 3) + { + fprintf(stderr, "Not enough entries on line %d of points\n", pt); + return -8; + } + } + if (pt < PTS) + { + fprintf(stderr, "Not enough points.\n"); + return -9; + } + fclose(f); + printf("Loaded %d points\n", pt); + + //Read all the normals on the HMD into hmd_norms. + f = fopen("HMD_normals.csv", "r"); + int nrm = 0; + if (!f) + { + fprintf(stderr, "error: can't open hmd points.\n"); + return -5; + } + while (!feof(f) && !ferror(f) && nrm < PTS) + { + float fa, fb, fc; + int r = fscanf(f, "%g %g %g\n", &fa, &fb, &fc); + hmd_norms[nrm * 3 + 0] = fa; + hmd_norms[nrm * 3 + 1] = fb; + hmd_norms[nrm * 3 + 2] = fc; + nrm++; + if (r != 3) + { + fprintf(stderr, "Not enough entries on line %d of normals\n", nrm); + return -8; + } + } + if (nrm < PTS) + { + fprintf(stderr, "Not enough points.\n"); + return -9; + } + if (nrm != pt) + { + fprintf(stderr, "point/normal counts disagree.\n"); + return -9; + } + fclose(f); + printf("Loaded %d norms\n", nrm); + + //Actually load the processed data! + int xck = 0; + f = fopen(datafile, "r"); + if (!f) + { + fprintf(stderr, "Error: cannot open %s\n", datafile); + exit(-11); + } + int lineno = 0; + while (!feof(f)) + { + //Format: + // HMD LX 0 3433 173656.227498 327.160210 36.342361 2.990936 + lineno++; + char devn[10]; + char inn[10]; + int id; + int pointct; + double avgTime; + double avgLen; + double stddevTime; + double stddevLen; + int ct = fscanf(f, "%9s %9s %d %d %lf %lf %lf %lf\n", devn, inn, &id, &pointct, &avgTime, &avgLen, &stddevTime, &stddevLen); + if (ct == 0) continue; + if (ct != 8) + { + fprintf(stderr, "Malformatted line, %d in processed_data.txt\n", lineno); + } + if (strcmp(devn, "HMD") != 0) continue; + + if (inn[0] != Camera) continue; + + int isy = inn[1] == 'Y'; + +// hmd_point_angles[id * 2 + isy] = (avgTime - 200000) / 200000 * 3.1415926535 / 2.0; + hmd_point_angles[id * 2 + isy] = (FLT)(avgTime / 48000000 * 60 * M_PI * 2); + + hmd_point_counts[id * 2 + isy] = pointct; + } + fclose(f); + + + int targpd; + int maxhits = 0; + + for (targpd = 0; targpd < PTS; targpd++) + { + int hits = hmd_point_counts[targpd * 2 + 0]; + if (hits > hmd_point_counts[targpd * 2 + 1]) hits = hmd_point_counts[targpd * 2 + 1]; + //Need an X and a Y lock. + + if (hits > maxhits) { maxhits = hits; best_hmd_target = targpd; } + } + if (maxhits < MIN_HITS_FOR_VALID) + { + fprintf(stderr, "Error: Not enough data for a primary fix.\n"); + } + + return 0; +} + + +int main(int argc, char ** argv) +{ + if (argc != 3) + { + fprintf(stderr, "Error: usage: lighthousefind-torus [camera (L or R)] [datafile]\n"); + exit(-1); + } + + //Load either 'L' (LH1) or 'R' (LH2) data. + if (LoadData(argv[1][0], argv[2])) return 5; + + + runTheNumbers(); + + return 0; +} diff --git a/tools/lighthousefind_tori/tori_includes.h b/tools/lighthousefind_tori/tori_includes.h new file mode 100644 index 0000000..a6820b5 --- /dev/null +++ b/tools/lighthousefind_tori/tori_includes.h @@ -0,0 +1,70 @@ +#ifndef __TORI_INCLUDES_H +#define __TORI_INCLUDES_H + +#include +#include +#include + + +typedef struct +{ + double x; + double y; + double z; +} Point; + +typedef struct +{ + Point point; // location of the sensor on the tracked object; + Point normal; // unit vector indicating the normal for the sensor + double theta; // "horizontal" angular measurement from lighthouse radians + double phi; // "vertical" angular measurement from lighthouse in radians. +} TrackedSensor; + +typedef struct +{ + size_t numSensors; + TrackedSensor sensor[0]; +} TrackedObject; + + +#ifndef M_PI +#define M_PI 3.14159265358979323846264338327 +#endif + +#define SQUARED(x) ((x)*(x)) + +typedef union +{ + struct + { + unsigned char Blue; + unsigned char Green; + unsigned char Red; + unsigned char Alpha; + }; +// float float_value; + uint32_t long_value; +} RGBValue; + +static RGBValue RED = { .Red = 255, .Green = 0, .Blue = 0, .Alpha = 125 }; +static RGBValue GREEN = { .Red = 0, .Green = 255, .Blue = 0, .Alpha = 125 }; +static RGBValue BLUE = { .Red = 0, .Green = 0, .Blue = 255, .Alpha = 125 }; + +static const double WORLD_BOUNDS = 100; +#define MAX_TRACKED_POINTS 40 + +static const float DefaultPointsPerOuterDiameter = 60; + + + +typedef struct +{ + // row, column, (0,0) in upper left + double val[3][3]; +} Matrix3x3; + + +//#define TORI_DEBUG + +#endif diff --git a/tools/lighthousefind_tori/torus_localizer.c b/tools/lighthousefind_tori/torus_localizer.c new file mode 100644 index 0000000..58e4938 --- /dev/null +++ b/tools/lighthousefind_tori/torus_localizer.c @@ -0,0 +1,561 @@ +#include +#include +#include +#include +#include "tori_includes.h" +#include "find_tori_math.h" +#include "visualization.h" + + +Matrix3x3 GetRotationMatrixForTorus(Point a, Point b) +{ + Matrix3x3 result; + double v1[3] = { 0, 0, 1 }; + double v2[3] = { a.x - b.x, a.y - b.y, a.z - b.z }; + + normalize_v3(v2); + + rotation_between_vecs_to_mat3(result.val, v1, v2); + + return result; +} + +Point RotateAndTranslatePoint(Point p, Matrix3x3 rot, Point newOrigin) +{ + Point q; + + double pf[3] = { p.x, p.y, p.z }; + //float pq[3]; + + //q.x = rot.val[0][0] * p.x + rot.val[0][1] * p.y + rot.val[0][2] * p.z + newOrigin.x; + //q.y = rot.val[1][0] * p.x + rot.val[1][1] * p.y + rot.val[1][2] * p.z + newOrigin.y; + //q.z = rot.val[2][0] * p.x + rot.val[2][1] * p.y + rot.val[2][2] * p.z + newOrigin.z; + q.x = rot.val[0][0] * p.x + rot.val[1][0] * p.y + rot.val[2][0] * p.z + newOrigin.x; + q.y = rot.val[0][1] * p.x + rot.val[1][1] * p.y + rot.val[2][1] * p.z + newOrigin.y; + q.z = rot.val[0][2] * p.x + rot.val[1][2] * p.y + rot.val[2][2] * p.z + newOrigin.z; + + return q; +} + +double angleFromPoints(Point p1, Point p2, Point center) +{ + Point v1, v2, v1norm, v2norm; + v1.x = p1.x - center.x; + v1.y = p1.y - center.y; + v1.z = p1.z - center.z; + + v2.x = p2.x - center.x; + v2.y = p2.y - center.y; + v2.z = p2.z - center.z; + + double v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z); + v1norm.x = v1.x / v1mag; + v1norm.y = v1.y / v1mag; + v1norm.z = v1.z / v1mag; + + double v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z); + v2norm.x = v2.x / v2mag; + v2norm.y = v2.y / v2mag; + v2norm.z = v2.z / v2mag; + + double res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z; + + double angle = acos(res); + + return angle; +} + +Point midpoint(Point a, Point b) +{ + Point m; + m.x = (a.x + b.x) / 2; + m.y = (a.y + b.y) / 2; + m.z = (a.z + b.z) / 2; + + return m; +} + + + + +// This is the second incarnation of the torus generator. It is intended to differ from the initial torus generator by +// producing a point cloud of a torus where the points density is more uniform across the torus. This will allow +// us to be more efficient in finding a solution. +void partialTorusGenerator( + Point p1, + Point p2, + double toroidalStartAngle, + double toroidalEndAngle, + double poloidalStartAngle, + double poloidalEndAngle, + double lighthouseAngle, + double toroidalPrecision, + Point **pointCloud) +{ + double poloidalRadius = 0; + double toroidalRadius = 0; + + Point m = midpoint(p1, p2); + double distanceBetweenPoints = distance(p1, p2); + + // ideally should only need to be lighthouseAngle, but increasing it here keeps us from accidentally + // thinking the tori converge at the location of the tracked object instead of at the lighthouse. + double centralAngleToIgnore = lighthouseAngle * 3; + + Matrix3x3 rot = GetRotationMatrixForTorus(p1, p2); + + toroidalRadius = distanceBetweenPoints / (2 * tan(lighthouseAngle)); + + poloidalRadius = sqrt(pow(toroidalRadius, 2) + pow(distanceBetweenPoints / 2, 2)); + + double poloidalPrecision = M_PI * 2 / toroidalPrecision; + + //unsigned int pointCount = toroidalPrecision * toroidalPrecision / 2 * (toroidalEndAngle - toroidalStartAngle) / (M_PI * 2) * (poloidalEndAngle - poloidalStartAngle) / (M_PI * 1); + //unsigned int pointCount = (unsigned int)(toroidalPrecision * ((M_PI - lighthouseAngle) * 2 / poloidalPrecision + 1) + 1); + // TODO: This calculation of the number of points that we will generate is excessively large (probably by about a factor of 2 or more) We can do better. + //float pointEstimate = (pointCount + 1000) * sizeof(Point) * 2 * M_PI / (toroidalEndAngle - toroidalStartAngle); + + unsigned int pointCount = 0; + + for (double poloidalStep = poloidalStartAngle; poloidalStep < poloidalEndAngle; poloidalStep += poloidalPrecision) + { + // here, we specify the number of steps that will occur on the toroidal circle for a given poloidal angle + // We do this so our point cloud will have a more even distribution of points across the surface of the torus. + double steps = (cos(poloidalStep) + 1) / 2 * toroidalPrecision; + + double step_distance = 2 * M_PI / steps; + + pointCount += (unsigned int)((toroidalEndAngle - toroidalStartAngle) / step_distance + 2); + } + + *pointCloud = malloc(pointCount * sizeof(Point) ); + + assert(0 != *pointCloud); + + (*pointCloud)[pointCount - 1].x = -1000; + (*pointCloud)[pointCount - 1].y = -1000; + (*pointCloud)[pointCount - 1].z = -1000; // need a better magic number or flag, but this'll do for now. + + size_t currentPoint = 0; + + for (double poloidalStep = poloidalStartAngle; poloidalStep < poloidalEndAngle; poloidalStep += poloidalPrecision) + { + // here, we specify the number of steps that will occur on the toroidal circle for a given poloidal angle + // We do this so our point cloud will have a more even distribution of points across the surface of the torus. + double steps = (cos(poloidalStep) + 1) / 2 * toroidalPrecision; + + double step_distance = 2 * M_PI / steps; + + //for (double toroidalStep = toroidalStartAngle; toroidalStep < toroidalEndAngle; toroidalStep += M_PI / 40) + for (double toroidalStep = toroidalStartAngle; toroidalStep < toroidalEndAngle; toroidalStep += step_distance) + { + if (currentPoint >= pointCount - 1) + { + int a = 0; + } + assert(currentPoint < pointCount - 1); + (*pointCloud)[currentPoint].x = (toroidalRadius + poloidalRadius*cos(poloidalStep))*cos(toroidalStep); + (*pointCloud)[currentPoint].y = (toroidalRadius + poloidalRadius*cos(poloidalStep))*sin(toroidalStep); + (*pointCloud)[currentPoint].z = poloidalRadius*sin(poloidalStep); + (*pointCloud)[currentPoint] = RotateAndTranslatePoint((*pointCloud)[currentPoint], rot, m); + + // TODO: HACK!!! Instead of doing anything with normals, we're "assuming" that all sensors point directly up + // and hence we know that nothing with a negative z value is a possible lightouse location. + // Before this code can go live, we'll have to take the normals into account and remove this hack. + if ((*pointCloud)[currentPoint].z > 0) + { + currentPoint++; + } + } + } + +#ifdef TORI_DEBUG + printf("%d / %d\n", currentPoint, pointCount); +#endif + (*pointCloud)[currentPoint].x = -1000; + (*pointCloud)[currentPoint].y = -1000; + (*pointCloud)[currentPoint].z = -1000; +} + +void torusGenerator(Point p1, Point p2, double lighthouseAngle, Point **pointCloud) +{ + + double centralAngleToIgnore = lighthouseAngle * 6; + + centralAngleToIgnore = 20.0 / 180.0 * M_PI; + + partialTorusGenerator(p1, p2, 0, M_PI * 2, centralAngleToIgnore + M_PI, M_PI * 3 - centralAngleToIgnore, lighthouseAngle, DefaultPointsPerOuterDiameter, pointCloud); + + return; +} + + +// What we're doing here is: +// * Given a point in space +// * And points and a lighthouse angle that implicitly define a torus +// * for that torus, what is the toroidal angle of the plane that will go through that point in space +// * and given that toroidal angle, what is the poloidal angle that will be directed toward that point in space? +// +// Given the toroidal and poloidal angles of a "good estimate" of a solution position, a caller of this function +// will be able to "draw" the point cloud of a torus in just the surface of the torus near the point in space. +// That way, the caller doesn't have to draw the entire torus in high resolution, just the part of the torus +// that is most likely to contain the best solution. +void estimateToroidalAndPoloidalAngleOfPoint( + Point torusP1, + Point torusP2, + double lighthouseAngle, + Point point, + double *toroidalAngle, + double *poloidalAngle) +{ + // this is the rotation matrix that shows how to rotate the torus from being in a simple "default" orientation + // into the coordinate system of the tracked object + Matrix3x3 rot = GetRotationMatrixForTorus(torusP1, torusP2); + + // We take the inverse of the rotation matrix, and this now defines a rotation matrix that will take us from + // the tracked object coordinate system into the "easy" or "default" coordinate system of the torus. + // Using this will allow us to derive angles much more simply by being in a "friendly" coordinate system. + rot = inverseM33(rot); + Point origin; + origin.x = 0; + origin.y = 0; + origin.z = 0; + + Point m = midpoint(torusP1, torusP2); + + // in this new coordinate system, we'll rename all of the points we care about to have an "F" after them + // This will be their representation in the "friendly" coordinate system + Point pointF; + + // Okay, I lied a little above. In addition to the rotation matrix that we care about, there was also + // a translation that we did to move the origin. If we're going to get to the "friendly" coordinate system + // of the torus, we need to first undo the translation, then undo the rotation. Below, we're undoing the translation. + pointF.x = point.x - m.x; + pointF.y = point.y - m.y; + pointF.z = point.z - m.z; + + // now we'll undo the rotation part. + pointF = RotateAndTranslatePoint(pointF, rot, origin); + + // hooray, now pointF is in our more-friendly coordinate system. + + // Now, it's time to figure out the toroidal angle to that point. This should be pretty easy. + // We will "flatten" the z dimension to only look at the x and y values. Then, we just need to measure the + // angle between a vector to pointF and a vector along the x axis. + + *toroidalAngle = atan(pointF.y / pointF.x); + if (pointF.x < 0) + { + *toroidalAngle += M_PI; + } + + // SCORE!! We've got the toroidal angle. We're half done! + + // Okay, what next...? Now, we will need to rotate the torus *again* to make it easy to + // figure out the poloidal angle. We should rotate the entire torus by the toroidal angle + // so that the point we're focusin on will lie on the x/z plane. We then should translate the + // torus so that the center of the poloidal circle is at the origin. At that point, it will + // be trivial to determine the poloidal angle-- it will be the angle on the xz plane of a + // vector from the origin to the point. + + // okay, instead of rotating the torus & point by the toroidal angle to get the point on + // the xz plane, we're going to take advantage of the radial symmetry of the torus + // (i.e. it's symmetric about the point we'd want to rotate it, so the rotation wouldn't + // change the torus at all). Therefore, we'll leave the torus as is, but we'll rotate the point + // This will only impact the x and y coordinates, and we'll use "G" as the postfix to represent + // this new coordinate system + + Point pointG; + pointG.z = pointF.z; + pointG.y = 0; + pointG.x = sqrt(SQUARED(pointF.x) + SQUARED(pointF.y)); + + // okay, that ended up being easier than I expected. Now that we have the point on the xZ plane, + // our next step will be to shift it down so that the center of the poloidal circle is at the origin. + // As you may have noticed, y has now gone to zero, and from here on out, we can basically treat + // this as a 2D problem. I think we're getting close... + + // I stole these lines from the torus generator. Gonna need the poloidal radius. + double distanceBetweenPoints = distance(torusP1, torusP2); // we don't care about the coordinate system of these points because we're just getting distance. + double toroidalRadius = distanceBetweenPoints / (2 * tan(lighthouseAngle)); + double poloidalRadius = sqrt(pow(toroidalRadius, 2) + pow(distanceBetweenPoints / 2, 2)); + + // The center of the polidal circle already lies on the z axis at this point, so we won't shift z at all. + // The shift along the X axis will be the toroidal radius. + + Point pointH; + pointH.z = pointG.z; + pointH.y = pointG.y; + pointH.x = pointG.x - toroidalRadius; + + // Okay, almost there. If we treat pointH as a vector on the XZ plane, if we get its angle, + // that will be the poloidal angle we're looking for. (crosses fingers) + + *poloidalAngle = atan(pointH.z / pointH.x); + if (pointH.x < 0) + { + *poloidalAngle += M_PI; + } + + // Wow, that ended up being not so much code, but a lot of interesting trig. + // can't remember the last time I spent so much time working through each line of code. + + return; +} + +double FindSmallestDistance(Point p, Point* cloud) +{ + Point *cp = cloud; + double smallestDistance = 10000000000000.0; + + while (cp->x != -1000 || cp->y != -1000 || cp->z != -1000) + { + double distance = (SQUARED(cp->x - p.x) + SQUARED(cp->y - p.y) + SQUARED(cp->z - p.z)); + if (distance < smallestDistance) + { + smallestDistance = distance; + } + cp++; + } + smallestDistance = sqrt(smallestDistance); + return smallestDistance; +} + +// Given a cloud and a list of clouds, find the point on masterCloud that best matches clouds. +Point findBestPointMatch(Point *masterCloud, Point** clouds, int numClouds) +{ + + Point bestMatch = { 0 }; + double bestDistance = 10000000000000.0; + Point *cp = masterCloud; + int point = 0; + while (cp->x != -1000 || cp->y != -1000 || cp->z != -1000) + { + point++; +#ifdef TORI_DEBUG + if (point % 100 == 0) + { + printf("."); + } +#endif + double currentDistance = 0; + for (int i = 0; i < numClouds; i++) + { + if (clouds[i] == masterCloud) + { + continue; + } + Point* cloud = clouds[i]; + currentDistance += FindSmallestDistance(*cp, cloud); + } + + if (currentDistance < bestDistance) + { + bestDistance = currentDistance; + bestMatch = *cp; + } + cp++; + } + + return bestMatch; +} + + +#define MAX_POINT_PAIRS 100 + +typedef struct +{ + Point a; + Point b; + double angle; +} PointsAndAngle; + +double angleBetweenSensors(TrackedSensor *a, TrackedSensor *b) +{ + double angle = acos(cos(a->phi - b->phi)*cos(a->theta - b->theta)); + double angle2 = acos(cos(b->phi - a->phi)*cos(b->theta - a->theta)); + + return angle; +} +double pythAngleBetweenSensors2(TrackedSensor *a, TrackedSensor *b) +{ + double p = (a->phi - b->phi); + double d = (a->theta - b->theta); + + double adjd = sin((a->phi + b->phi) / 2); + double adjP = sin((a->theta + b->theta) / 2); + double pythAngle = sqrt(SQUARED(p*adjP) + SQUARED(d*adjd)); + return pythAngle; +} +Point SolveForLighthouse(TrackedObject *obj, char doLogOutput) +{ + PointsAndAngle pna[MAX_POINT_PAIRS]; + //Point lh = { 10, 0, 200 }; + + size_t pnaCount = 0; + for (unsigned int i = 0; i < obj->numSensors; i++) + { + for (unsigned int j = 0; j < i; j++) + { + if (pnaCount < MAX_POINT_PAIRS) + { + pna[pnaCount].a = obj->sensor[i].point; + pna[pnaCount].b = obj->sensor[j].point; + + pna[pnaCount].angle = pythAngleBetweenSensors2(&obj->sensor[i], &obj->sensor[j]); + + double pythAngle = sqrt(SQUARED(obj->sensor[i].phi - obj->sensor[j].phi) + SQUARED(obj->sensor[i].theta - obj->sensor[j].theta)); + + //double tmp = angleFromPoints(pna[pnaCount].a, pna[pnaCount].b, lh); + + pnaCount++; + } + } + } + + //Point **pointCloud = malloc(sizeof(Point*)* pnaCount); + Point **pointCloud = malloc(sizeof(void*)* pnaCount); + + FILE *f = NULL; + if (doLogOutput) + { + f = fopen("pointcloud2.pcd", "wb"); + writePcdHeader(f); + writeAxes(f); + } + + for (unsigned int i = 0; i < pnaCount; i++) + { + torusGenerator(pna[i].a, pna[i].b, pna[i].angle, &(pointCloud[i])); + if (doLogOutput) + { + writePointCloud(f, pointCloud[i], COLORS[i%MAX_COLORS]); + } + + } + + Point bestMatchA = findBestPointMatch(pointCloud[0], pointCloud, pnaCount); + + if (doLogOutput) + { + markPointWithStar(f, bestMatchA, 0xFF0000); + } +#ifdef TORI_DEBUG + printf("(%f,%f,%f)\n", bestMatchA.x, bestMatchA.y, bestMatchA.z); +#endif + // Now, let's add an extra patch or torus near the point we just found. + + double toroidalAngle = 0; + double poloidalAngle = 0; + + + + Point **pointCloud2 = malloc(sizeof(void*)* pnaCount); + + for (unsigned int i = 0; i < pnaCount; i++) + { + estimateToroidalAndPoloidalAngleOfPoint( + pna[i].a, + pna[i].b, + pna[i].angle, + bestMatchA, + &toroidalAngle, + &poloidalAngle); + + partialTorusGenerator(pna[i].a, pna[i].b, toroidalAngle - 0.2, toroidalAngle + 0.2, poloidalAngle - 0.2, poloidalAngle + 0.2, pna[i].angle, 800, &(pointCloud2[i])); + + if (doLogOutput) + { + writePointCloud(f, pointCloud2[i], COLORS[i%MAX_COLORS]); + } + + } + + Point bestMatchB = findBestPointMatch(pointCloud2[0], pointCloud2, pnaCount); + if (doLogOutput) + { + markPointWithStar(f, bestMatchB, 0x00FF00); + } +#ifdef TORI_DEBUG + printf("(%f,%f,%f)\n", bestMatchB.x, bestMatchB.y, bestMatchB.z); +#endif + + Point **pointCloud3 = malloc(sizeof(void*)* pnaCount); + + for (unsigned int i = 0; i < pnaCount; i++) + { + estimateToroidalAndPoloidalAngleOfPoint( + pna[i].a, + pna[i].b, + pna[i].angle, + bestMatchB, + &toroidalAngle, + &poloidalAngle); + + partialTorusGenerator(pna[i].a, pna[i].b, toroidalAngle - 0.05, toroidalAngle + 0.05, poloidalAngle - 0.05, poloidalAngle + 0.05, pna[i].angle, 3000, &(pointCloud3[i])); + + if (doLogOutput) + { + writePointCloud(f, pointCloud3[i], COLORS[i%MAX_COLORS]); + } + + } + + Point bestMatchC = findBestPointMatch(pointCloud3[0], pointCloud3, pnaCount); + if (doLogOutput) + { + markPointWithStar(f, bestMatchC, 0xFFFFFF); + } +#ifdef TORI_DEBUG + printf("(%f,%f,%f)\n", bestMatchC.x, bestMatchC.y, bestMatchC.z); +#endif + + + if (doLogOutput) + { + updateHeader(f); + fclose(f); + } + + return bestMatchC; +} + +static Point makeUnitPoint(Point *p) +{ + Point newP; + double r = sqrt(p->x*p->x + p->y*p->y + p->z*p->z); + newP.x = p->x / r; + newP.y = p->y / r; + newP.z = p->z / r; + + return newP; +} + +static double getPhi(Point p) +{ + // double phi = acos(p.z / (sqrt(p.x*p.x + p.y*p.y + p.z*p.z))); + // double phi = atan(sqrt(p.x*p.x + p.y*p.y)/p.z); + double phi = atan(p.x / p.z); + return phi; +} + +static double getTheta(Point p) +{ + //double theta = atan(p.y / p.x); + double theta = atan(p.x / p.y); + return theta; +} + +// subtraction +static Point PointSub(Point a, Point b) +{ + Point newPoint; + + newPoint.x = a.x - b.x; + newPoint.y = a.y - b.y; + newPoint.z = a.z - b.z; + + return newPoint; +} + + diff --git a/tools/lighthousefind_tori/torus_localizer.h b/tools/lighthousefind_tori/torus_localizer.h new file mode 100644 index 0000000..b8e7360 --- /dev/null +++ b/tools/lighthousefind_tori/torus_localizer.h @@ -0,0 +1,12 @@ +#ifndef __TORUS_LOCALIZER_H +#define __TORUS_LOCALIZER_H +#include + +#include "tori_includes.h" +#include "find_tori_math.h" + +Point SolveForLighthouse(TrackedObject *obj, char doLogOutput); + + + +#endif diff --git a/tools/lighthousefind_tori/visualization.c b/tools/lighthousefind_tori/visualization.c new file mode 100644 index 0000000..d348c2d --- /dev/null +++ b/tools/lighthousefind_tori/visualization.c @@ -0,0 +1,94 @@ +#include "visualization.h" +#include "tori_includes.h" + +int pointsWritten = 0; + + +void writePoint(FILE *file, double x, double y, double z, unsigned int rgb) +{ + fprintf(file, "%f %f %f %u\n", x, y, z, rgb); + pointsWritten++; +} + +void updateHeader(FILE * file) +{ + fseek(file, 0x4C, SEEK_SET); + fprintf(file, "%d", pointsWritten); + fseek(file, 0x7C, SEEK_SET); + fprintf(file, "%d", pointsWritten); +} +void writeAxes(FILE * file) +{ + double scale = 5; + for (double i = 0; i < scale; i = i + scale / 1000) + { + writePoint(file, i, 0, 0, 255); + } + for (double i = 0; i < scale; i = i + scale / 1000) + { + if ((int)(i / (scale / 5)) % 2 == 1) + { + writePoint(file, 0, i, 0, 255 << 8); + } + } + for (double i = 0; i < scale; i = i + scale / 10001) + { + if ((int)(i / (scale / 10)) % 2 == 1) + { + writePoint(file, 0, 0, i, 255 << 16); + } + } +} + +void drawLineBetweenPoints(FILE *file, Point a, Point b, unsigned int color) +{ + int max = 50; + for (int i = 0; i < max; i++) + { + writePoint(file, + (a.x*i + b.x*(max - i)) / max, + (a.y*i + b.y*(max - i)) / max, + (a.z*i + b.z*(max - i)) / max, + color); + } +} + +void writePcdHeader(FILE * file) +{ + fprintf(file, "VERSION 0.7\n"); + fprintf(file, "FIELDS x y z rgb\n"); + fprintf(file, "SIZE 4 4 4 4\n"); + fprintf(file, "TYPE F F F U\n"); + fprintf(file, "COUNT 1 1 1 1\n"); + fprintf(file, "WIDTH \n"); + fprintf(file, "HEIGHT 1\n"); + fprintf(file, "VIEWPOINT 0 0 0 1 0 0 0\n"); + fprintf(file, "POINTS \n"); + fprintf(file, "DATA ascii\n"); + + //fprintf(file, "100000.0, 100000.0, 100000\n"); + +} + +void writePointCloud(FILE *f, Point *pointCloud, unsigned int Color) +{ + Point *currentPoint = pointCloud; + + while (currentPoint->x != -1000 || currentPoint->y != -1000 || currentPoint->z != -1000) + { + writePoint(f, currentPoint->x, currentPoint->y, currentPoint->z, Color); + currentPoint++; + } +} + +void markPointWithStar(FILE *file, Point point, unsigned int color) +{ + double i; + for (i = -0.8; i <= 0.8; i = i + 0.0025) + { + writePoint(file, point.x + i, point.y, point.z, color); + writePoint(file, point.x, point.y + i, point.z, color); + writePoint(file, point.x, point.y, point.z + i, color); + } + +} diff --git a/tools/lighthousefind_tori/visualization.h b/tools/lighthousefind_tori/visualization.h new file mode 100644 index 0000000..e7f9475 --- /dev/null +++ b/tools/lighthousefind_tori/visualization.h @@ -0,0 +1,48 @@ + +#ifndef __VISUALIZATION_H +#define __VISUALIZATION_H + +#include +#include "tori_includes.h" +#include "find_tori_math.h" + +extern int pointsWritten; + +void writePoint(FILE *file, double x, double y, double z, unsigned int rgb); + +void updateHeader(FILE * file); + +void writeAxes(FILE * file); + +void drawLineBetweenPoints(FILE *file, Point a, Point b, unsigned int color); + +void writePcdHeader(FILE * file); + +void writePointCloud(FILE *f, Point *pointCloud, unsigned int Color); + +void markPointWithStar(FILE *file, Point point, unsigned int color); + +#define MAX_COLORS 18 +static unsigned int COLORS[] = { + 0x00FFFF, + 0xFF00FF, + 0xFFFF00, + 0xFF0000, + 0x00FF00, + 0x0000FF, + 0x0080FF, + 0x8000FF, + 0x80FF00, + 0x00FF80, + 0xFF0080, + 0xFF8000, + 0x008080, + 0x800080, + 0x808000, + 0x000080, + 0x008000, + 0x800000 +}; +#endif + + -- cgit v1.2.3