aboutsummaryrefslogtreecommitdiff
path: root/src/poser_charlesrefine.c
diff options
context:
space:
mode:
authorJustin Berger <j.david.berger@gmail.com>2018-04-03 23:44:14 -0600
committerJustin Berger <j.david.berger@gmail.com>2018-04-03 23:44:14 -0600
commitc7d9d271796b20f886e2441de852498ecb25ca82 (patch)
tree5929c2793c33c80e5392982a9baaa8d5ccaca724 /src/poser_charlesrefine.c
parentfe025b0ff6bfb440da7cec8f388fa951910a86f0 (diff)
parent6a45298c9bc34aac59cc2ebb9de2d82c7a42756e (diff)
downloadlibsurvive-c7d9d271796b20f886e2441de852498ecb25ca82.tar.gz
libsurvive-c7d9d271796b20f886e2441de852498ecb25ca82.tar.bz2
Merge branch 'master' into imu
Diffstat (limited to 'src/poser_charlesrefine.c')
-rw-r--r--src/poser_charlesrefine.c342
1 files changed, 342 insertions, 0 deletions
diff --git a/src/poser_charlesrefine.c b/src/poser_charlesrefine.c
new file mode 100644
index 0000000..388ba77
--- /dev/null
+++ b/src/poser_charlesrefine.c
@@ -0,0 +1,342 @@
+// Driver works, but you _must_ start it near the origin looking in +Z.
+
+#include <poser.h>
+#include <survive.h>
+#include <survive_reproject.h>
+
+#include "epnp/epnp.h"
+#include "linmath.h"
+#include <math.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+
+#define MAX_PT_PER_SWEEP 32
+
+typedef struct {
+ int sweepaxis;
+ int sweeplh;
+ FLT normal_at_errors[MAX_PT_PER_SWEEP][3]; // Value is actually normalized, not just normal to sweep plane.
+ FLT quantity_errors[MAX_PT_PER_SWEEP];
+ FLT angles_at_pts[MAX_PT_PER_SWEEP];
+ SurvivePose object_pose_at_hit[MAX_PT_PER_SWEEP];
+ uint8_t sensor_ids[MAX_PT_PER_SWEEP];
+ int ptsweep;
+} CharlesPoserData;
+
+int PoserCharlesRefine(SurviveObject *so, PoserData *pd) {
+ CharlesPoserData *dd = so->PoserData;
+ if (!dd)
+ so->PoserData = dd = calloc(sizeof(CharlesPoserData), 1);
+
+ SurviveSensorActivations *scene = &so->activations;
+ switch (pd->pt) {
+ case POSERDATA_IMU: {
+ // Really should use this...
+ PoserDataIMU *imuData = (PoserDataIMU *)pd;
+
+ // TODO: Actually do Madgwick's algorithm
+ LinmathQuat applymotion;
+ const SurvivePose *object_pose = &so->OutPose;
+ imuData->gyro[0] *= -0.0005;
+ imuData->gyro[1] *= -0.0005;
+ imuData->gyro[2] *= 0.0005;
+ quatfromeuler(applymotion, imuData->gyro);
+ // printf( "%f %f %f\n", imuData->gyro [0], imuData->gyro [1], imuData->gyro [2] );
+ SurvivePose object_pose_out;
+ quatrotateabout(object_pose_out.Rot, object_pose->Rot, applymotion);
+ copy3d(object_pose_out.Pos, object_pose->Pos);
+ PoserData_poser_pose_func(pd, so, &object_pose_out);
+
+ return 0;
+ }
+ case POSERDATA_LIGHT: {
+ int i;
+ PoserDataLight *ld = (PoserDataLight *)pd;
+ int lhid = ld->lh;
+ int senid = ld->sensor_id;
+ BaseStationData *bsd = &so->ctx->bsd[ld->lh];
+ if (!bsd->PositionSet)
+ break;
+ SurvivePose *lhp = &bsd->Pose;
+ FLT angle = ld->angle;
+ int sensor_id = ld->sensor_id;
+ int axis = dd->sweepaxis;
+ const SurvivePose *object_pose = &so->OutPose;
+ dd->sweeplh = lhid;
+
+ // FOR NOW, drop LH1.
+ // if( lhid == 1 ) break;
+
+ // const FLT * sensor_normal = &so->sensor_normals[senid*3];
+ // FLT sensor_normal_worldspace[3];
+ // ApplyPoseToPoint(sensor_normal_worldspace, object_pose, sensor_inpos);
+
+ const FLT *sensor_inpos = &so->sensor_locations[senid * 3];
+ FLT sensor_position_worldspace[3];
+ // XXX Once I saw this get pretty wild (When in playback)
+ // I had to invert the values of sensor_inpos. Not sure why.
+ ApplyPoseToPoint(sensor_position_worldspace, object_pose, sensor_inpos);
+
+ // printf( "%f %f %f == > %f %f %f\n", sensor_inpos[0], sensor_inpos[1], sensor_inpos[2],
+ // sensor_position_worldspace[0], sensor_position_worldspace[1], sensor_position_worldspace[2] );
+ // = sensor position, relative to lighthouse center.
+ FLT sensorpos_rel_lh[3];
+ sub3d(sensorpos_rel_lh, sensor_position_worldspace, lhp->Pos);
+
+ // Next, define a normal in global space of the plane created by the sweep hit.
+ // Careful that this must be normalized.
+ FLT sweep_normal[3];
+
+ // If 1, the "y" axis. //XXX Check me.
+ if (axis) // XXX Just FYI this should include account for skew
+ {
+ sweep_normal[0] = 0;
+ sweep_normal[1] = cos(angle);
+ sweep_normal[2] = sin(angle);
+ // printf( "+" );
+ } else {
+ sweep_normal[0] = cos(angle);
+ sweep_normal[1] = 0;
+ sweep_normal[2] = -sin(angle);
+ // printf( "-" );
+ }
+
+ // Need to apply the lighthouse's transformation to the sweep's normal.
+ quatrotatevector(sweep_normal, lhp->Rot, sweep_normal);
+
+ // Compute point-line distance between sensorpos_rel_lh and the plane defined by sweep_normal.
+ // Do this by projecting sensorpos_rel_lh (w) onto sweep_normal (v).
+ // You can do this by |v dot w| / |v| ... But we know |v| is 1. So...
+ FLT dist = dot3d(sensorpos_rel_lh, sweep_normal);
+
+ if ((i = dd->ptsweep) < MAX_PT_PER_SWEEP) {
+ memcpy(dd->normal_at_errors[i], sweep_normal, sizeof(FLT) * 3);
+ dd->quantity_errors[i] = dist;
+ dd->angles_at_pts[i] = angle;
+ dd->sensor_ids[i] = sensor_id;
+ memcpy(&dd->object_pose_at_hit[i], object_pose, sizeof(SurvivePose));
+ dd->ptsweep++;
+ }
+
+ return 0;
+ }
+
+ case POSERDATA_SYNC: {
+ PoserDataLight *l = (PoserDataLight *)pd;
+ int lhid = l->lh;
+
+ // you can get sweepaxis and sweeplh.
+ if (dd->ptsweep) {
+ int i;
+ int lhid = dd->sweeplh;
+ int axis = dd->sweepaxis;
+ int pts = dd->ptsweep;
+ const SurvivePose *object_pose =
+ &so->OutPose; // XXX TODO Should pull pose from approximate time when LHs were scanning it.
+
+ BaseStationData *bsd = &so->ctx->bsd[lhid];
+ SurvivePose *lh_pose = &bsd->Pose;
+
+ int validpoints = 0;
+ int ptvalid[MAX_PT_PER_SWEEP];
+ FLT avgerr = 0.0;
+ FLT vec_correct[3] = {0., 0., 0.};
+ FLT avgang = 0.0;
+
+// Tunable parameters:
+#define MIN_HIT_QUALITY 0.5 // Determines which hits to cull.
+#define HIT_QUALITY_BASELINE \
+ 0.0001 // Determines which hits to cull. Actually SQRT(baseline) if 0.0001, it is really 1cm
+
+#define CORRECT_LATERAL_POSITION_COEFFICIENT 0.8 // Explodes if you exceed 1.0
+#define CORRECT_TELESCOPTION_COEFFICIENT 8.0 // Converges even as high as 10.0 and doesn't explode.
+#define CORRECT_ROTATION_COEFFICIENT \
+ 1.0 // This starts to fall apart above 5.0, but for good reason. It is amplified by the number of points seen.
+#define ROTATIONAL_CORRECTION_MAXFORCE 0.10
+
+ // Step 1: Determine standard of deviation, and average in order to
+ // drop points that are likely in error.
+ {
+ // Calculate average
+ FLT avgerr_orig = 0.0;
+ FLT stddevsq = 0.0;
+ for (i = 0; i < pts; i++)
+ avgerr_orig += dd->quantity_errors[i];
+ avgerr_orig /= pts;
+
+ // Calculate standard of deviation.
+ for (i = 0; i < pts; i++) {
+ FLT diff = dd->quantity_errors[i] - avgerr_orig;
+ stddevsq += diff * diff;
+ }
+ stddevsq /= pts;
+
+ for (i = 0; i < pts; i++) {
+ FLT err = dd->quantity_errors[i];
+ FLT diff = err - avgerr_orig;
+ diff *= diff;
+ int isptvalid = (diff * MIN_HIT_QUALITY <= stddevsq + HIT_QUALITY_BASELINE) ? 1 : 0;
+ ptvalid[i] = isptvalid;
+ if (isptvalid) {
+ avgang += dd->angles_at_pts[i];
+ avgerr += err;
+ validpoints++;
+ }
+ }
+ avgang /= validpoints;
+ avgerr /= validpoints;
+ }
+
+ // Step 2: Determine average lateral error.
+ // We can actually always perform this operation. Even with only one point.
+ {
+ FLT avg_err[3] = {0, 0, 0}; // Positional error.
+ for (i = 0; i < pts; i++) {
+ if (!ptvalid[i])
+ continue;
+ FLT *nrm = dd->normal_at_errors[i];
+ FLT err = dd->quantity_errors[i];
+ avg_err[0] = avg_err[0] + nrm[0] * err;
+ avg_err[1] = avg_err[1] + nrm[1] * err;
+ avg_err[2] = avg_err[2] + nrm[2] * err;
+ }
+
+ // NOTE: The "avg_err" is not geometrically centered. This is actually
+ // probably okay, since if you have sevearl data points to one side, you
+ // can probably trust that more.
+ scale3d(avg_err, avg_err, 1. / validpoints);
+
+ // We have "Average error" now. A vector in worldspace.
+ // This can correct for lateral error, but not distance from camera.
+
+ // XXX TODO: Should we check to see if we only have one or
+ // two points to make sure the error on this isn't unusually high?
+ // If calculated error is unexpectedly high, then we should probably
+ // Not apply the transform.
+ scale3d(avg_err, avg_err, -CORRECT_LATERAL_POSITION_COEFFICIENT);
+ add3d(vec_correct, vec_correct, avg_err);
+ }
+
+ // Step 3: Control telecoption from lighthouse.
+ // we need to find out what the weighting is to determine "zoom"
+ if (validpoints > 1) // Can't correct "zoom" with only one point.
+ {
+ FLT zoom = 0.0;
+ FLT rmsang = 0.0;
+ for (i = 0; i < pts; i++) {
+ if (!ptvalid[i])
+ continue;
+ FLT delang = dd->angles_at_pts[i] - avgang;
+ FLT delerr = dd->quantity_errors[i] - avgerr;
+ if (axis)
+ delang *= -1; // Flip sign on alternate axis because it's measured backwards.
+ zoom += delerr * delang;
+ rmsang += delang * delang;
+ }
+
+ // Control into or outof lighthouse.
+ // XXX Check to see if we need to sqrt( the rmsang), need to check convergance behavior close to
+ // lighthouse.
+ // This is a questionable step.
+ zoom /= sqrt(rmsang);
+
+ zoom *= CORRECT_TELESCOPTION_COEFFICIENT;
+
+ FLT veccamalong[3];
+ sub3d(veccamalong, lh_pose->Pos, object_pose->Pos);
+ normalize3d(veccamalong, veccamalong);
+ scale3d(veccamalong, veccamalong, zoom);
+ add3d(vec_correct, veccamalong, vec_correct);
+ }
+
+ SurvivePose object_pose_out;
+ add3d(object_pose_out.Pos, vec_correct, object_pose->Pos);
+
+ quatcopy(object_pose_out.Rot, object_pose->Rot);
+
+ // Stage 4: "Tug" on the rotation of the object, from all of the sensor's pov.
+ // If we were able to determine likliehood of a hit in the sweep instead of afterward
+ // we would actually be able to perform this on a per-hit basis.
+ if (1) {
+ LinmathQuat correction;
+ quatcopy(correction, LinmathQuat_Identity);
+ for (i = 0; i < pts; i++) {
+ if (!ptvalid[i])
+ continue;
+ FLT dist = dd->quantity_errors[i] - avgerr;
+ FLT angle = dd->angles_at_pts[i];
+ int sensor_id = dd->sensor_ids[i];
+ FLT *normal = dd->normal_at_errors[i];
+ const SurvivePose *object_pose_at_hit = &dd->object_pose_at_hit[i];
+ const FLT *sensor_inpos = &so->sensor_locations[sensor_id * 3];
+
+ LinmathQuat world_to_object_space;
+ quatgetreciprocal(world_to_object_space, object_pose_at_hit->Rot);
+ FLT correction_in_object_space[3]; // The amount across the surface of the object the rotation
+ // should happen.
+
+ quatrotatevector(correction_in_object_space, world_to_object_space, normal);
+ dist *= CORRECT_ROTATION_COEFFICIENT;
+ if (dist > ROTATIONAL_CORRECTION_MAXFORCE)
+ dist = ROTATIONAL_CORRECTION_MAXFORCE;
+ if (dist < -ROTATIONAL_CORRECTION_MAXFORCE)
+ dist = -ROTATIONAL_CORRECTION_MAXFORCE;
+
+ // Now, we have a "tug" vector in object-local space. Need to apply the torque.
+ FLT vector_from_center_of_object[3];
+ normalize3d(vector_from_center_of_object, sensor_inpos);
+ // scale3d(vector_from_center_of_object, sensor_inpos, 10.0 );
+ // vector_from_center_of_object[2]*=-1;
+ // vector_from_center_of_object[1]*=-1;
+ // vector_from_center_of_object[0]*=-1;
+ // vector_from_center_of_object
+ scale3d(vector_from_center_of_object, vector_from_center_of_object, 1);
+
+ FLT new_vector_in_object_space[3];
+ // printf( "%f %f %f %f\n", object_pose_at_hit->Rot[0], object_pose_at_hit->Rot[1],
+ // object_pose_at_hit->Rot[2], object_pose_at_hit->Rot[3] );
+ // printf( "%f %f %f // %f %f %f // %f\n", vector_from_center_of_object[0],
+ // vector_from_center_of_object[1], vector_from_center_of_object[2], correction_in_object_space[0],
+ // correction_in_object_space[1], correction_in_object_space[2], dist );
+ scale3d(correction_in_object_space, correction_in_object_space, -dist);
+ add3d(new_vector_in_object_space, vector_from_center_of_object, correction_in_object_space);
+
+ normalize3d(new_vector_in_object_space, new_vector_in_object_space);
+
+ LinmathQuat corrective_quaternion;
+ quatfrom2vectors(corrective_quaternion, vector_from_center_of_object, new_vector_in_object_space);
+ quatrotateabout(correction, correction, corrective_quaternion);
+ // printf( "%f -> %f %f %f => %f %f %f [%f %f %f %f]\n", dist, vector_from_center_of_object[0],
+ // vector_from_center_of_object[1], vector_from_center_of_object[2],
+ // correction_in_object_space[0], correction_in_object_space[1], correction_in_object_space[2],
+ // corrective_quaternion[0],corrective_quaternion[1],corrective_quaternion[1],corrective_quaternion[3]);
+ }
+ // printf( "Applying: %f %f %f %f\n", correction[0], correction[1], correction[2], correction[3] );
+ // Apply our corrective quaternion to the output.
+ quatrotateabout(object_pose_out.Rot, object_pose_out.Rot, correction);
+ quatnormalize(object_pose_out.Rot, object_pose_out.Rot);
+ }
+
+ // Janky need to do this somewhere else... This initializes the pose estimator.
+ if (so->PoseConfidence < .01) {
+ memcpy(&object_pose_out, &LinmathPose_Identity, sizeof(LinmathPose_Identity));
+ so->PoseConfidence = 1.0;
+ }
+
+ PoserData_poser_pose_func(pd, so, &object_pose_out);
+ dd->ptsweep = 0;
+ }
+
+ dd->sweepaxis = l->acode & 1;
+ // printf( "SYNC %d %p\n", l->acode, dd );
+ break;
+ }
+ case POSERDATA_FULL_SCENE: {
+ // return opencv_solver_fullscene(so, (PoserDataFullScene *)(pd));
+ }
+ }
+ return -1;
+}
+
+REGISTER_LINKTIME(PoserCharlesRefine);